中国科学院国家科学图书馆

科学研究动态监测快报

2012年11月15日 第22期(总第164期)

先进制造与新材料科技专辑

本期重点

- 美国国家制造业创新网络浅析
- 欧日开展绿色材料和清洁技术集群合作
- 美国启动计算材料数据网络建设
- 德国推出原材料高效利用项目
- 第一块全碳太阳电池在斯坦福问世

中国科学院高技术研究与发展局中国科学院国家科学图书馆武汉分馆

目 录

专 题	
美国国家制造业创新网络浅析	1
政策计划	
欧日开展绿色材料和清洁技术集群合作	5
美启动计算材料数据网络建设	7
德推出原材料高效利用项目	7
英计划向欧空局追加投资研发新一代卫星	7
行业动态	
XG Science与ORNL合作开发钛-石墨烯复合材料	8
研究进展	
第一块全碳太阳电池在斯坦福问世	8
美研制出新一代高性能钢铁	9
纳米晶镍催化剂提高产氢量	9
威斯康星大学: 高技术材料推动制造业发展	10
计算方法预测和揭示纳米合金催化剂结构	10

专题

美国国家制造业创新网络浅析

编者按: 2012年3月9日,美国总统奥巴马在参观劳斯莱斯 Crosspointe 喷气发动机涡轮盘制造工厂时发表演讲,建议设立由不超过15家研究机构组成的"国家制造业创新网络"(National Network for Manufacturing Innovation, NNMI)。随后,美国国内掀起了一场为制造业创新网络建言献策的热潮:5月9日,美国国家标准与技术研究院在"联邦纪事"网站上发布《针对NNMI的信息及意见征集》,在美国各地举办四场研讨会,召集利益相关方讨论、现场征求意见等。截至10月底,已有1000多家高校、企业等机构就NNMI的设计提供了建议。NNMI到底是一个什么计划?为何美国人如此热衷于该计划?它和制造业伙伴关系计划有何区别?本期专题将就这些问题展开解读。

一、建立制造业创新网络的背景

美国政府为了征求公众对国家制造业创新网络(NNMI)的意见,在美国各地举行了四次研讨会。研讨会报告显示,美国对制造业应用阶段投入严重不足。由图1可以看出,技术成熟度可分为九个阶段,美国政府和高校的投入集中在1-4阶段,私营部门的投入集中在7-9阶段,而4-7阶段中间存在投入空白。

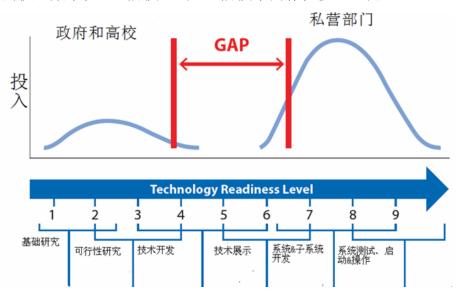


图 1 美国制造业创新投入存在空白

从对制造业的投入来看,美国政府对基础研究和商业化活动投入力度较大(图2):基础研究方面,美国能源部能源创新中心以及国家科学基金会工程研究中心每年预算额度都在100万至1000万美元之间;商业化方面,遍及全美各个州以及波多黎各的59个制造业扩展伙伴关系计划(MEP)中心在2011财年的预算为464万美

元。但是在应用环节,美国政府投入力度较小,仅有小企业创新研究资助计划(Small Business Innovation Research,SBIR)¹和小企业技术转移资助计划(Small Business Technology Transfer Program,STTP)²,资助额度都在 10 万美元以下。美国政府希望通过在NNMI框架下建立制造业创新研究所,来打通"基础研究-应用研究-商业化"环节。

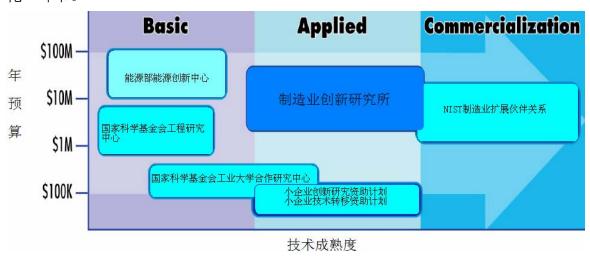


图 2 美国政府各机构在基础-应用-商业化环节经费图

二、制造业创新网络的颁布

2012年3月9日, 奥巴马在参观劳斯莱斯 Crosspointe 喷气发动机涡轮盘制造工厂的时候发表演讲,建议设立由不超过15家研究机构组成的 NNMI,通过加强研究机构与制造企业之间合作,为美国创造更多的就业机会,从而提振美国经济。

这些研究机构的研究重点将放在大规模制造技术、降低成本和商业化风险上,已经确立的研究领域包括:(1)开发碳纤维复合材料等轻质材料,提高下一代汽车、飞机、火车和轮船等的燃料效率、性能以及抗腐蚀性;(2)完善 3D 打印技术相关标准、材料和设备,以实现利用数字化设计进行低成本小批量的产品生产;(3)创造智能制造框架和方法,允许生产运营者实时掌握来自全数字化工厂的"大数据流",以提高生产效率、优化供应链,并提高能源、水和材料的使用效率等。

为了支持创建这个新的 NNMI,总统预算案提出了 10 亿美元的投资计划。美国政府将立即采取措施推动制造业创新机构试点,每个试点研究机构将从美国国防部、能源部、商务部和国家自然科学基金会获取 4500 万美元的研发资助。

三、制造业创新网络的设计建议征集

奥巴马建议成立 NNMI 后,就开始着手收集对该网络的设计建议。意见征集通

¹ 《小企业发展法》规定联邦政府中的NASA等十一个政府部门需依法实施SBIR计划,拨出在该机构以外(大学、大企业等)进行研究与开发经费的 2.5%用于支持小企业创新。

² 《小企业技术转移法》要求NASA等五个联邦政府部门将其研究经费中的 0.3%调拨用于STTR计划,资助高校或非赢利性研究机构与小企业的合作及其技术转移。

过线上(主要通过"联邦登记"网站)和线下(现场研讨会)这两条途径进行。

(1) 通过"联邦登记"网站广泛征求社会建议

5月4日,NIST先进制造国家项目办公室(AMNPO)³在"联邦登记"网站(Federal Register) ⁴就NNMI发布信息征询书。⁵

在此次信息征询书中,AMNPO 希望就各个制造业创新研究所和整个 NNMI 如何整合能力与设施以降低新技术商业化的成本和风险征求建议。AMNPO 欢迎任何有关制造业创新网络设计和影响的建议,特别是影响深远的技术、研究所的结构和管理、研究所可持续的运营策略以及教育和劳动力的开发等。

10月25日,网上建议征求活动结束。

(2) 举办研讨会现场征求建议

网下征求意见的方式主要是举办区域性研讨会,现场征求各利益相关方的意见。 4月至10月,美国政府在各地举办四场区域研讨会。

时间	承办机构	地点
4月25日	伦斯勒理工大学	纽约州
7月9日	Cuyahoga 社区学院	俄亥俄州
9月27日	美国国家工程与科学院 Arnold and Mabel Beckman 中心	加利福尼亚州
10月18日	千禧年丰收客房布尔德酒店	科罗拉多州

表 1 NNMI 区域研讨会一览

四、制造业创新网络框架下首个制造业创新研究所的设立

在 NNMI 还在意见征求阶段,首个添加制造创新研究所就迅速成立了。从 4 月 13 日提出建议到 8 月 16 日正式成立,仅仅用时四个月不到(表 2)。

时间	事件
4月13日	美国空军研究实验室针对制造创新国家网络发布特别通知(Special Notice),建议
	成立添加制造创新研究所。
5月8日	国防部发布的广泛机构公告(Broad Agency Announcement),对获批的添加制造创
	新研究所提供为期30个月总额达3000万美元的资助。对试点研究所的资助和管理
	将是一次跨部门的努力,主要由负责制造业和产业基础政策的助理国防部长帮办办
	公室领导,并通过空军研究实验室执行。
5月16日	添加制造创新研究所筹备组第一次会议。

表 2 添加制造创新研究所大事记

https://www.federalregister.gov/articles/2012/05/04/2012-10809/request-for-information-on-proposed-new-program-national-network-for-manufacturing-innovation-nnmi

³ 是由NIST主持,国防部、能源部、商务部、国家科学基金会、美国航空航天局及其他机构联合组建的一个跨机构办公室。

⁴ 是一个汇集和发布联邦政府和总统颁布的所有规章条例的网站,法律法规在实施之前必须在该网站上公开征求意见。

8月16日 奥巴马政府宣布,将与私营部门共同出资建设国家添加制造技术研究所。国防部、 能源部和商务部等5家政府部门将共同出资4500万美元,位于俄亥俄-宾夕法尼亚 -西弗吉尼亚技术带(tech-belt)上的企业、学校和非营利性组织组成的联合团体将 出资4000万美元进行匹配。

五、制造业伙伴关系计划与国家制造业创新网络的比较

2011年6月24日,美国总统奥巴马宣布了超过5亿美元的"先进制造业伙伴关系"计划,时隔一年美国政府又推出了国家制造业创新网络。这两者之间有何联系和区别呢?

通过对美国先进制造业伙伴关系与国家制造业创新网络的对比(表 3),发现美国政府对制造业的观念在发生变化。先进制造伙伴关系计划中所涉及的多半是美国在全球已经居于领先地位的行业,无法为美国提供更多的高质量就业岗位。为了扩大中产阶级人群,提高财税收入,避免"财政悬崖"的发生,就必须实现制造业的全面整体发展;要实现制造业的全面整体发展就必须在通用、支撑、使能技术上下功夫,而这就是制造业创新网络要解决的问题。

表 3 制造业伙伴关系与制造业创新网络的比较

	比较	先进制造业伙伴关系	制造业创新网络
	相同点	①都是国家级制造业发展计划;	
		②都是联邦各部门联合资助;	
		③都是以加强官产学合作为手段,提升美国制造业竞争力水平为最终目的。	
	研究目标遴选	尖端技术	通用、支撑、使能技术
不	主要任务	提高美国制造业关键领域竞争力	改造美国制造业,使其面目一新
同	组织模式	以项目为纽带,形式较为松散	成立实体研究机构,关系紧密、刚性
点	资助模式	项目资助	稳定资助
	实施方针	全面铺开	成熟一个,上马一个

黄 健 编写

政策计划

欧日开展绿色材料和清洁技术集群合作

在"欧盟促进国际中小企业集群合作计划"(EU Initiative Promoting International Cluster Cooperation for SMEs)下,欧盟和日本于 11 月 12 日至 15 日在东京举行了欧盟-日本绿色材料和清洁技术集群对接合作会议。该集群合作计划获得了欧洲委员会企业与工业总司(European Commission's Directorate-General for Enterprise and Industry)和欧盟竞争力与创新框架计划的支持。作为一项新政策,旨在促进国际中小企业集群合作,组织特定国际集群对接活动,支持集群组织和中小企业成员在全球市场上建立伙伴关系和业务合作关系。

该计划第一个阶段的活动将集中在绿色材料方面,即这次在日本东京举行的绿色创新科技博览会(Green Innovation Expo 2012),由欧盟-日本产业合作中心和索菲亚-安提波利斯基金会旗下的一个财团联合主办。由 18 个集群和中小企业的代表(包括德国、法国、瑞典、波兰、丹麦、西班牙和意大利)组成的一个欧洲代表团参加了会议,启动绿色材料领域的合作协议,并具体落实合作伙伴关系,重点合作领域包括:节能材料与部件、低环境负担材料与部件、轻量化材料与部件、能源生产和储存材料与部件、高寿命材料与部件、支持材料与部件新应用和发展的技术等。

欧洲的 9 个集群基本上代表了清洁技术领域的创新区域,集群分布见图 1,具体的 9 个创新集群和部分中小企业见表 1。

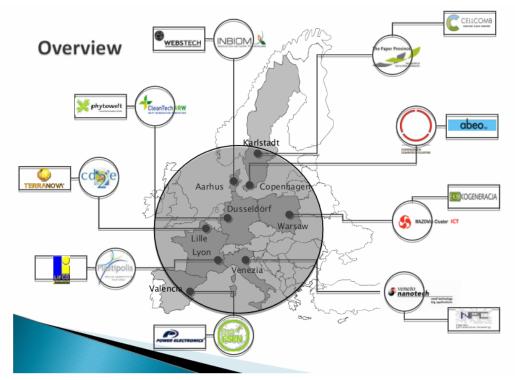


图 1 欧盟清洁技术领域 9 个创新集群分布图

	中小企业(SME)
法国 CD2e 集群(www.cd2e.com)研究包括新型环境技术,如废物管理、回收、生态环境材料及建筑物等。不仅管理欧洲的项目,还管理在巴西和加拿大的各种国际项目。位于法国 Loos-en-Gohelle,包括 600 家企业和 60 个研究实验室。	Terra Nova(www.terranovametal.fr)专注于金属回收工艺和印刷电路板回收的研究、设计和实施。
德国 CleanTechNRW 集群(www.cleantechnrw.de) 发展、促进和实施能源、化工、钢铁、生物技术等领域 之间的潜在创新能力。目标是提升CO ₂ 减排及这四个交 叉能源领域合作潜力。位于勒沃库森,包括 80 家企业。	Phytowelt(www.phytowelt.com) 专注于咨询、研发项目、技术和市场 研究、组织和基因工程领域。
丹麦哥本哈根清洁技术集群(www.cphcleantech.com) 支持清洁技术领域公司和机构之间的研究和创新伙伴 关系。是全球清洁技术集群协会成员。包括 200 家企业。	ABEO(www.abeo.dk) 专注于发展混凝土建筑技术,从根本 上改善建筑行业的资助和环境影响。
丹麦生物质能创新网络-INBIOM 集群(www.inbiom.dk) 在生物质能源领域知识和商业利益之间架起一座桥梁, 发展新技术、产品和公司。由6家企业联合管理,重组 150家企业。	WebsTech ApS(www.webstech.dk) 专注于发展和制造的无线传感器技术,检测农作物等生物质在农业和食品工业的存储。
波兰马佐夫舍省 ICT 集群(www.klasterict.pl) 为业务协作、研发机构、当地的各国政府和商业组织创 建信息和通信技术领域平台,有效和经济地实现创新技 术和解决方案。位于波兰华沙,代表 50 家企业。	Ekokogeneracja SA (ekokogeneracja.com) 专注于热电可再生能源。
瑞典 Paper Province 集群(www.paperprovince.com)解决纸浆和造纸技术领域的问题。位于瑞典卡尔斯塔德,代表 93 家企业。	Cellcomb AB(www.cellcomb.com) 专注于采用环境友好技术生产床上用 品和毛巾、食品包装品等。
法国 Plastipolis 集群(www.plastipolis.fr) 属于塑料工程行业集群,促进实现法国中小企业创新。 还实施欧盟层面的各种研发项目。位于法国 Oyonnax, 包括 280 企业。	LIFCO(www.lifco-industrie.com) 专注于粉末材料的表面工程。
西班牙巴伦西亚能源产业集群(www.avaesen.es) 促进合理利用能源,提高能源安全,对抗气候变化,支持可再生能源和清洁技术行业的发展和创新。位于西班牙瓦伦西亚,代表 175 家企业。	Power Electronics (www.powerelectronics.es) 专注于能源电力器件生产,包括高功 率电机、电启动器、速度驱动器和太 阳能逆变器。
意大利威尼托纳米技术集群(www.venetonanotech.it) 建立国际卓越研究中心,培育纳米技术应用。位于意大 利帕多瓦,管理纳米技术领域各种研发活动。	Nanto Protective Coating (www.nantopaint.com) 专注于基于纳米技术的防腐和防火涂 料发展和创新。

冯瑞华 编译自

 $http://www.clustercollaboration.eu/documents/270937/0/EUClusterMission_12-15NOV2012_EUdeleg\\ at ion+_short+version.pdf$

检索日期: 2012年11月14日

美启动计算材料数据网络建设

为加速新材料的开发和应用,并作为对"材料基因组计划"的响应,美国材料信息学会(ASM International,

新网络的 LOGO 原 美 国 金 属 学 会) 创 立 了 计 算 材 料 数 据 网 络 (Computational Materials Data Network)。该网络在起步阶段将由管理与技术咨询公司 Nexight Group 负责数据收集、发布、管理等事物。

该网络当前正在组织专家团队对加工过程中的材料数据、航空结构材料数据、国家材料研究数据库等的小规模试验项目进行调研。

万 勇 编译自

http://www.asminternational.org/portal/site/www/NewsItem/?vgnextoid=37b1b5c5051da310VgnVCM 100000621e010aRCRD

检索日期: 2012年11月13日

德推出原材料高效利用项目

10月22日,德国联邦教研部(BMBF)宣布启动高科技战略原材料研究项目,项目经费达2亿欧元。

该项目致力于开发高效利用并回收原材料的特殊工艺,从勘探、开采、加工、 回收到替代,追随非能源矿产资源的整个价值开发链,以便加强稀土、铟、镓、铂 族金属等的回收,促使资源循环。这类原材料对于通信技术、环保技术或是可再生 能源产业极为重要。

该项目的启动将有助于实现德国政府的资源战略与资源效率计划,并可为落实 BMBF 与环境部(BMU)在9月共同通过的"绿色经济"联合倡议做出贡献。

阮国锦 编译自

http://www.bmbf.de/press/3360.php

检索日期: 2012年11月14日

英计划向欧空局追加投资研发新一代卫星

11 月 9 日,英国财政大臣奥斯本在英国皇家学会的演讲中宣布:英国每年将向欧空局的项目追加投资 6000 万英镑,使得该国每年对欧空局项目资助总额达到 2.4 亿英镑。

本次追加投资的主要领域是新一代通信卫星平台和气象卫星,预计在未来几年内将带来大量的订单。

英国大学与科学事务大臣 David Willetts 认为,此举是为了提供更多的高技术职位,以驱动英国经济增长,使得英国空间产业到 2030 年总值达到 300 亿英镑。

【快报延伸】11月20日,每四年一次的欧空局部长理事会将在那不勒斯举行,以决定未来欧洲空间项目和活动。英国在此时宣布对欧空局项目的追加投资,其目的是希望帮助英国在欧空局下一阶段合作中占据领导地位。

黄 健 编译自

 $http://www.bis.gov.uk/ukspaceagency/news-and-events/2012/Nov/uk-space-industry-set-to-rocket-wit \\ h-240-million-of-investment$

检索日期: 2012年11月14日

行业动态

XG Science 与 ORNL 合作开发钛-石墨烯复合材料

美国 XG Science 公司与橡树岭国家实验室(ORNL)展开一项联合研究计划,通过一种先进粉末冶金工艺开发钛-石墨烯复合材料。这种材料将能够很好地结合钛金属的结构性能和石墨烯的热电导体性能。

二者的合作也能够发挥各自长处: XG Science 能够规模化生产石墨烯,而橡树岭实验室在低温粉末金属工艺上独树一帜。

姜 山 编译自

 $http://xgsciences.com/releases/xg-sciences-and-oak-ridge-national-laboratory-launch-joint-developme\\ nt-program-for-advanced-titanium graphene-composite-materials/$

检索日期: 2012年11月12日

研究进展

第一块全碳太阳电池在斯坦福问世

斯坦福大学 Zhenan Bao 教授率领的研究团队研制出第一块完全由碳材料组成的太阳电池。许多屋顶安装的硅太阳电池面板是刚性的,加工的步骤较为繁琐;而该全碳薄膜原型是柔性的,通过简单的方法即可在溶液中进行涂覆,并且无需用到昂贵的工具和机械。

一般薄膜太阳电池的电极是由导电金属和氧化铟锡(ITO)组成,该全碳电池的电极则是石墨烯和单壁碳纳米管,活化层用的碳材料是单壁碳纳米管和"巴基球"

C₆₀。据介绍,此前有其他团队曾报道说制出了全碳太阳电池,但那仅仅指的是电极之间的活化层,并非电极。

在高温高压等极端条件下,全碳太阳电池的性能可超越传统太阳电池。

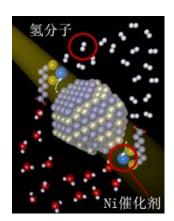
不过,该全碳太阳电池存在一个缺陷:主要吸收近红外波长的光,吸收效率不到 1%。为此,研究团队正在开展改进工作,以期能吸收更大波长范围内的光,包括可见光。

相关研究工作发表在 ACS Nano 上(文章标题: Evaluation of Solution-Processable Carbon-Based Electrodes for All-Carbon Solar Cells)。

万 勇 编译自

http://engineering.stanford.edu/news/stanford-scientists-build-first-all-carbon-solar-cell 检索日期: 2012 年 11 月 13 日

美研制出新一代高性能钢铁


美国韦恩州立大学工程学院 Susil Putatunda 教授开发出由贝氏体钢和奥贝球铁组成的新型钢铁材料,具有高屈服强度、断裂韧性和延展性,可有效预防疲劳。

新材料所用到的原材料以及加工工艺均来自当前钢铁行业,但性能有了大的提升,如屈服强度提高了两倍、断裂韧性提高了近三倍,抗张强度、耐久性、轻质性也有所加改进,等温淬火工艺的能耗降低,并取消了后处理过程。该新型钢铁的碳、硅含量较高,其强度和耐久性符合装甲车辆应对临时爆炸装置的需求。

万 勇 编译自http://research.wayne.edu/news.php?id=10353

检索日期: 2012年11月13日

纳米晶镍催化剂提高产氢量

CdSe 纳米晶吸收光并把 电子转移到 Ni 催化剂,随 后生成氢

美国罗切斯特大学化学系教授 Richard Eisenberg 研究组及其合作者开发出一种新的氢气生产系统。与其他的催化系统类似,这个系统也需要生色团(光吸收材料)和溶剂。他们使用 CdSe 量子点(纳米晶)作为生色团,硝酸镍作为催化剂,水作为溶剂。

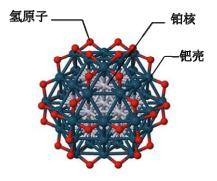
传统光催化系统的催化剂铂金非常昂贵,该系统使用的 是更便宜的金属如镍等作催化剂,大大降低了成本,而且这 个系统的化学反应能持续很长时间,能增加目前光驱动氢气 生产系统的产量。

王桂芳 编译自 http://www.rochester.edu/news/show.php?id=4892 检索日期: 2012 年 11 月 10 日

威斯康星大学: 高技术材料推动制造业发展

美国威斯康星大学麦迪逊分校 Chang-Beom Eom 教授利用类似人类基因组序列的方法发现和创造革命性的先进多功能材料,推动低成本的日常电子和能源设备的研究与开发。

这支研究团队的主要研究方向是复合金属氧化物材料。只有几个原子厚的金属氧化物材料具有独特的电、光和磁学性质,使它们有望成为传统的硅基半导体的替代品。将各种复杂结构的金属氧化物材料制成新型复合金属氧化物材料,从而拥有充满想象的、令人兴奋的新特性。该研究团队从计算机生成的理想模型,测试不同结构、不同成分的新型金属氧化物材料,改进理论和重复整个过程,直到找到具有独特性能的、正确的材料。


该研究获得了材料基因组计划框架下,由国家科学基金会设立的"设计材料以改革和建设我们的未来"计划(Designing Materials to Revolutionize and Engineer our Future)的资助,总额 160 万美元,是所有材料基因组计划中获得资助额度最高的研究项目。

黄 健 编译自

http://www.news.wisc.edu/21242

检索日期: 2012年11月14日

计算方法预测和揭示纳米合金催化剂结构

计算方法设计的纳米合金催化剂

铂钯纳米合金是水分解产氢的高效催化剂,其 催化性能与纳米粒子的结构直接相关,而采用实验 方法构建原子尺度的粒子结构难以实施。

新加坡科学技术研究局(A*STAR)高性能计算研究所 Teck Leong Tan 开发出一种计算方法,可以预测稳定铂钯纳米合金的结构。研究人员通过计算方法表明:铂-核、钯-壳纳米粒子非常稳定,氢原子吸附在粒子表面被催化转化成气体氢。

相关研究工作发表在 *Nano Letters* 上(文章标题: A comprehensive search for stable Pt-Pd nanoalloy configurations and their use as tunable catalysts)。

冯瑞华 编译自

http://www.research.a-star.edu.sg/research/6581

检索日期: 2012年11月13日

版权及合理使用声明

中国科学院国家科学图书馆《科学研究动态监测快报》(简称《快报》)遵守国家知识产权法的规定,保护知识产权,保障著作权人的合法利益,并要求参阅人员及研究人员认真遵守中国版权法的有关规定。用于读者个人学习、研究目的的单篇信息报道稿件的使用,应注明版权信息和信息来源。未经中国科学院国家科学图书馆同意,严禁将《快报》用于任何商业或其他营利性用途,院内外各单位不能以任何方式整期转载、链接或发布相关专题的《快报》。如需要链接、整期发布或转载相关专题的《快报》内容,应向中国科学院国家科学图书馆发送正式的需求函,说明其用途,征得同意,并与国家科学图书馆签订协议。中国科学院国家科学图书馆总证两站发布所有专题的《快报》,国家科学图书馆各分馆网站发布各相关专题的《快报》。

欢迎对中国科学院国家科学图书馆《科学研究动态监测快报》提出 意见与建议。

中国科学院国家科学图书馆

National Science Library of Chinese Academy of Sciences

《科学研究动态监测快报》

《科学研究动态监测快报》(以下简称系列《快报》)是由中国科学院国家科学图书馆总馆、兰州分馆、成都分馆、武汉分馆以及中科院上海生命科学信息中心编辑出版的科技信息报道类半月快报刊物,由中科院基础科学局、资源环境科学与技术局、生命科学与生物技术局、高技术研究与发展局、规划战略局等中科院专业局、职能局或科技创新基地支持和指导,于2004年12月正式启动,每月1日和15日出版。2006年10月,国家科学图书馆按照统一规划、系统布局、分工负责、整体集成的思路,按照中科院1+10科技创新基地,重新规划和部署了系列《快报》。系列《快报》的重点服务对象一是中科院领导、中科院专业局职能局领导和相关管理人员;二是中科院所属研究所领导及相关科技战略研究专家;三是国家有关科技部委的决策者和管理人员以及有关科技战略研究专家。系列《快报》内容力图恰当地兼顾好科技决策管理者与战略科学家的信息需求,报道各科学领域的国际科技战略与规划、科技计划与预算、科技进展与动态、科技前沿与热点、重大研发与应用、科技政策与管理等方面的最新进展与发展动态。

系列《快报》现分 13 个专辑, 分别为由中科院国家科学图书馆总馆承担的《基础科学专辑》、《现代农业科技专辑》、《空间光电科技专辑》、《科技战略与政策专辑》;由兰州分馆承担的《资源环境科学专辑》、《地球科学专辑》、《气候变化科学专辑》;由成都分馆承担的《信息科技专辑》、《先进工业生物科技专辑》;由武汉分馆承担的《先进能源科技专辑》、《先进制造与新材料科技专辑》、《生物安全专辑》;由上海生命科学信息中心承担的《生命科学专辑》。

编辑出版:中国科学院国家科学图书馆

联系地址:北京市海淀区北四环西路 33 号(100190)

联 系 人:冷伏海 王俊

电 话: 010-62538705 62539101

电子邮件: lengfh@mail.las.ac.cn; wangj@mail.las.ac.cn

先进制造与新材料科技专辑

联系地址:湖北省武汉市武昌区小洪山西区 25 号 (430071)

联 系 人: 万勇 冯瑞华

电 话: 027-87199180

电子邮件: jiance@mail.whlib.ac.cn