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The current growth in transportation-related greenhouse gas (GHG) emissions has been largely attributed to
rapid urbanization, particularly for cities in developing countries. Studies on the contributing factors and analysis
of themechanisms bywhich they influence transportation GHGemissions could aid in better achievement ofmit-
igation goals. Yet, comparative contributions of the different sources of these drivers have not been well quanti-
tatively investigated. This study employs a wide range of indicators across urban form, socio-demographic
characteristics and residents' travel attitudes. By integrating a questionnaire-based survey of 1125 household in
45 communities in Xiamen City, China, land-use-based urban form quantification, inventory-based GHG calcula-
tion, a path analysis model is built to identify the interactions among these indicators and investigate their com-
parative direct and indirect effects on residents' local transportation GHG emissions. It was found that many
variables interactively influence the transportation GHG emissions, producing considerable effects, both direct
and indirect. Urban form plays a leading role in transportation GHG emissions, in comparison to socio-
demographics and travel attitudes. Population density, land use mix, road connectivity and bus accessibility, in
urban form; education, in socio-demographics; and willingness to ride the bus, in travel attitudes; were found
to have significant positive effects on reducing residents' local transportation GHG emissions. Urban density—
characterized by population density here—is the primary influential factor, due not only to its large direct effects,
but also to its wide indirect effects through its influence on other variables. The results of this studymay help pol-
icymakers consider how they can effectively utilize these key indicators to formulatemitigations in the transpor-
tation sector, and particularly, how to design low-carbon-friendly urban forms, in urban planning.
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1. Introduction

1.1. Motivation

Cities are facing compound challenges from climate change mitiga-
tion and urbanization (Pancost, 2016; Rosenzweig et al., 2010). The
transportation sector is one of the most important sources of green-
house gas (GHG) emissions contributed by human activities in the
urban environment, and was responsible for 23% of CO2 emissions
from fuel combustion in 2014, with three quarters of this amount com-
ing from road vehicles (IEA, 2016). Further concern over this issue has
arisen because of rapid urbanization, with large populations migrating
from rural to urban societies, leading to massive growth in transporta-
tion demand and vehicle kilometers traveled (VKT). This pattern is
likely to continue in most cities, over the next few decades (Forman
and Wu, 2016; United Nations, 2018), suggesting an overall increasing
trend of transportation-related GHG emissions in the future. This
trend may increase the pressure for countries to meet their targets set
by the 2015 Paris Climate Agreement (McPhearson, 2016), and compro-
mise the on-going international efforts to meet the Climate Action in
Sustainable Development Goals (SDGs). Developing countries like
China have more urgent need for these actions, as well as the greatest
potential for reducing future emissions, because they are in the acceler-
ating stage of urbanization, and the drivers of transportation GHG, such
as urban form, socio-demographics and residents' travel attitudes, have
been changing dramatically. Therefore, comprehensive study of the fac-
tors and understanding their mechanisms of influence on transporta-
tion GHG emissions could aid in better planning of climate actions
designed to achieve the transportation sector's mitigation goals, in the
context of climate change and urbanization.

1.2. Literature review

An increasing body of research has investigated the factors influenc-
ing residents' transportation behaviors and the resulting GHG emis-
sions. Generally, variables in these studies refer: (1) urban form,
(2) socio-demographics, and (3) travel-attitude-based residential self-
selection. Previous travel research has demonstrated the considerable
potential of changing the built environment to reduce travel demand.
In these studies, built environment usually refers to the urban form
characteristics, and was measured by the “D Variables”—including den-
sity, diversity of land use, design of street, destination accessibility and
distance to transit (Cervero and Kockelman, 1997; Ewing and Cervero,
2001; Ewing et al., 2009). Urban form is the physical patterns, layouts,
and structures that make up urban environment (Muscato, 2017). It is
well known that urban form affects GHG emissions, primarily in the
transportation sector (Hankey and Marshall, 2010; Ishii et al., 2010;
Liu and Sweeney, 2012). Density, land usemix, accessibility and connec-
tivity are themajor urban form drivers of transportation energy use and
GHGemissions (Banister, 2011; Seto et al., 2014). There is consistent ev-
idence that urban forms characterized by high density, mixed land uses,
and adequate transit connectivity and accessibility are appropriate for
encouraging non-vehicle travel and reducing VKT, leading to greater
emissions savings in the transportation sector (Creutzig et al., 2016;
Lee and Lee, 2014). As a result, land use planning has focused on com-
pact city design that aims to limit sprawl and reduce automobile
dependence–and thus VKT, energy consumption, and GHG emissions
(Zhao et al., 2011).

Incorporating the socio-demographic factors in empirical studies
on travel behavior is necessary, because different socio-demographic
groups have different activity patterns (Chapin, 1974; Van Acker
et al., 2010). Previous studies have demonstrated that—besides
urban form—transportation GHG emissions also vary in relation to
socio-demographic characteristics. Gross domestic product (GDP)—
perceived as a vital metric of income—is the main driving factor for
the growth of per capita CO2 emissions from transportation on the
national scale, as demonstrated by the works of Lakshmanan and
Han, 1997; Mazzarino, 2000; Yang et al., 2015 in the U.S., Italy and
China, respectively. When looking at the household scale, socio-
demographics such as household size, income, education, employ-
ment, age, car ownership, et al. may affect residents' travel behavior
and the resulting transportation GHG emissions, in varying degrees
(Büchs and Schnepf, 2013; Bhat et al., 2009).

More recently, the role of citizens' travel attitude on travel behavior
has been receiving increasing attention. Milakis et al., 2017 employed
three indicators: walking preference, car preference and travel attitude
to trip convenience to investigate the effect of travel attitude on travel
behavior in Greece. Travel attitude affects residential self-selection
which is defined as “the trend of residents to select locations on the
basis of their travel preferences, needs and abilities” (Litman, 2005).
For example, residents who prefer driving may consciously choose to
live in remote and spacious neighborhood, while residents who prefer
public transit and walking are of more possibility to live in neighbor-
hood accessible to bus stations and conducive to walking (Bohte et al.,
2009). Cao et al., 2009;Mokhtarian and Cao, 2008 examined the impacts
of residential self-selection on travel behavior by reviewing empirical
studies relating to this topic, and concluded that the travel attitudes
accounted for a predominant role in travel behavior. However, Naess,
2014 argues that residential self-selection is hardly influence travel be-
havior. This shows that the effect of travel-attitude-based residential
self-selection on travel behavior is not quite clear yet.

Generally, many sources of variables may affect residents' travel
behavior and the consequent GHG emissions, and previous studies
have tried to investigate the contributions of urban form, socio-
demographics and travel attitudes. One concern is that these factors
may interact, thereby leading to both direct and indirect casual effects
on residents' GHG emissions. The interactions may exist between the
same category of factors or between the different category of factors.
For example, high density of urban form is generally associated with
mixed land use, high accessibility and sufficient road connectivity
(Song et al., 2017); household income is associated with education
level, employment, car ownership, etc. (Diener, 1993); urban form
such as density, accessibility and road connectivity may associate with
socio-demographics like car ownership (Cao et al., 2007). As a form of
Structural Equation Modeling (SEM), path analysis is a statistical tech-
nique used to evaluate causal models by examining the relationships
between a dependent variable and two or more independent variables
(Streiner, 2005). Unlike other techniques, path analysis is expert in ex-
amining the comparative strength of direct and indirect effects from in-
dependent variables to a dependent variable because it specifies
relationships among all of the independent variables, and therefore
the method has been adopted in physical sciences, medical science
and social sciences for complex planning problems (Crossman, 2017).
Several previous literatures attempted to apply path analysis to investi-
gate the factors influencing travel behavior or its energy consumption.
Using the path analysis, Bagley and Mokhtarian, 2002 examined the re-
lationship of residential neighborhood type to travel behavior, incorpo-
rating attitudinal, lifestyle, and demographic variables in the San
Francisco Bay Area; Eboli et al., 2012 explored the relationship among
some spatial variables regarding geographical features, activity location,
demographic and economic characteristics, and transportation vari-
ables such as trip production; Liu and Shen, 2011 examined the effects
of urban land use characteristics on household travel and transportation
energy consumption in the Baltimore metropolitan area. However, the
comparative contribution of different sources of factors have not been
comprehensively investigated in one model, and there is a lack of case
studies in cities of developing countries.

1.3. Contribution

In the present study, by integrating a questionnaire-based survey of
1125 household in 45 communities in Xiamen City, China, land-use-
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based urban form quantification, inventory-based GHG calculation, a
path analysis model was built to identify the interactions among factors
from urban form, socio-demographics and travel attitudes, and investi-
gate their comparative direct and indirect effects on urban residents'
local transportation GHG emissions.

2. Study area and methods

2.1. Study area and sampling

Xiamen City, with 3,860,000 population in 2015 and 1573 km2 land
area located on the southeastern coast of China, is a Special Economic
Zone in China. Over the past three decades, the booming economy and
rapid urbanization of Xiamen City have greatly altered urban land use,
spatial form and socio-economic level, which have not only increased
the demand for transportation, but also changed the residents' trans-
portationmodes (Cui et al., 2011). According to the residents' travel sur-
vey by Xiamen Institute of City Planning, residents in Xiamen City are
increasingly relying on private car with its proportion increasing form
4.90% in 2003 to 8.21% in 2009, nevertheless proportion of non-
motorized modes (including walking and bicycling) decreasing from
50% to 40.72% (Wu et al., 2009). As a result, GHG from the transporta-
tion sector have been increasing rapidly.

In this study, to obtain the required information on urban form,
socio-demographics, travel attitudes, and residents' transportation
GHG emissions, the stratified random sampling method was employed
to determine 45 urban communities, and their location are depicted in
Fig. 1. The stratified random sampling takes full account of the diversity
of the samples, and therefore the data of the samples is more represen-
tative than the simple random sampling (Särndal et al., 2003). Twenty-
five volunteer families for each community were randomly selected to
take part in this research; hence the original sample consisted of 1125
households.

2.2. Measurements

In October 2015, trained interviewers visited the selected urban
families and carried out a face-to-face questionnaire survey for each
household. Three aspects of information were collected: (1) family
socio-demographic characteristics; (2) family members' attitudes on
transportationmodes; and (3) familymembers' local transportation ac-
tivity details fromMonday to Sunday within one week, including desti-
nations, modes, frequency, and distance. In the survey, destinations
Fig. 1. Study area and
include workplace/school, shopping center/supermarket, public service
agencies (e.g., hospital, library, administration and services centre), ser-
vice establishments (e.g., banks, restaurant, cafe shop, laundromats,
barber shops), entertainment venues (e.g., parks, sports stadiums, the-
aters, concert halls). Transportation models include walking, bicycling,
private car, taxi, bus, and motorcycle.

2.2.1. Residents' transportation GHG emissions
GHG emissions from residents' transportation activity were calcu-

lated by multiplying each local activity level by its corresponding emis-
sion factor. In this study, only direct emissions are calculated. Indirect
emissions from fuel production and infrastructure are excluded due to
data limitation. Activity level was quantified according to each family
member's transportation details, including destinations, modes, fre-
quency, and distance. By referring to the IPCC's methods (IPCC, 2006)
and local emission factors, GHG—including CO2, CH4 and N2O—for pri-
vate car, taxi, bus andmotorcycle was calculated (details in Supplemen-
tary Information). In this analysis, emissions for CH4 and N2O were
converted to carbon dioxide equivalent value (CO2e).

2.2.2. Socio-demographics
Socio-demographics including family size, income, age, and educa-

tion were recorded in the questionnaire. Family size refers to the
number of family members. Household income was taken as monthly
family income. Age is the average age of family members. During the
interview, the educational background for each family member was re-
corded. To quantify the household educational level, the educational
background was measured using a 1 to 5 scoring scale: primary educa-
tion or below = 1, junior high school education = 2, high school
education = 3, undergraduate or specialist qualifications = 4, and
graduate degree = 5, and the average value represents the household
educational level.

2.2.3. Travel attitudes
In the questionnaire, three queries: (1) willingness to walk instead

of traveling by car if possible; (2) willingness to ride the bus instead of
traveling by car if possible; and (3)willingness to bicycle insteadof trav-
eling by car if possible, were designed to gain information on residents'
attitudes on transportation options. The Likert scale was applied to
quantify the response: strongly disagree = 1, disagree = 2, neutral =
3, agree = 4, strongly agree = 5. The average value for each question
for all family members was calculated, to represent the household's at-
titudes to walk, ride the bus, and bicycle.
sampling sites.



Table 1
Statistical descriptions of urban residents' transportation GHG emissions, urban form,
socio-demographics and travel attitudes, for 45 communities.

Variables N Min Max Mean SD

Residents' transportation GHG emissions
(kg CO2e/capita/day)

45 0.190 1.620 0.594 0.284

Population density (population/km2) 45 1168 60,529 22,473 17,737
Land use mix 45 0.01 0.72 0.49 0.15
Road connectivity 45 0.44 53.61 13.70 12.04
Bus accessibility 45 0.10 6.68 1.87 1.36
Shape compactness 45 0.03 0.50 0.22 0.14
Shape complexity 45 1.20 3.51 1.82 0.47
Family size 45 1.52 4.32 3.16 0.43
Household income (thousand RMB) 45 81.07 187.81 134.64 20.48
Average age of family 45 30.00 51.30 39.66 5.35
Household educational level 45 1.80 3.50 2.88 0.31
Willingness to walk 45 3.02 4.51 3.94 0.32
Willingness to ride the bus 45 2.77 4.24 3.66 0.33
Willingness to bicycle 45 2.71 4.24 3.44 0.30

Fig. 2. Characteristics of urban residents' transportation modes and GHG emissions.
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2.2.4. Urban form
To characterize urban form, 10 × 10-meter high-resolution land use

data of Xiamen City for 2014 was generated using the inversion of
IKONOS satellite data and digitization of land use maps provided by
the Xiamen Urban Planning and Design Institute. On this basis, the
land use was reclassified into thirteen types (Table S3). For each sample
of communities, the urban form is represented by employing a range of
indicators including population density, land usemix, road connectivity,
bus accessibility, shape compactness and shape complexity. These indi-
cators depict many aspects of urban form, in which population density
is the measurement of urban density; land use mix is the diversities
and integration of different land use; road connectivity refers to street
density; accessibility combines proximity and travel time, but here is
measured by bus accessibility—distance from a community to the
nearest bus stop—due to data limitation; shape compactness and
shape complexity are the measurements of geometric shapes of built-
up area. Their definitions and estimation are described in the Supple-
mentary Information.

2.3. Data analysis

2.3.1. Correlation analysis
Correlation analysis was employed to identify the correlations

among urban form, socio-demographics, travel attitudes, and transpor-
tation GHG emissions. It helps to select the key factors and identify their
interrelationships thatwill be involved in the path analysismodel. Since
educational level and travel attitudes indicators were measured using
an ordinal scale, Spearman correlation analysis was applied.

2.3.2. Path analysis
According to the key factors and their interrelationships identified

by correlation analysis, we built a path analysis to investigate the direct
and indirect effects of urban form, socio-demographics and travel atti-
tudes on residents' transportation GHG emissions. In path analysis di-
rect effects occur directly from one variable to another, and indirect
effects are effects that is mediated by other variables (Garson, 2013;
Streiner, 2005). The standard path coefficient represents the strength
of the effect, referring to the standard deviation changes of one variable
when another variable rises 1 standard deviation (Kline, 2015). In em-
pirical studies, absolute values of standard path coefficient b 0.10
imply a “small” effect; values around 0.30, a “medium” effect; and
values N0.50, a “large” effect (Dessardo et al., 2012). After interrelation-
ships among variables are identified based on general logic, previous re-
searches and correlation coefficients, a hypothesized path analysis
model is built. Its performance is assessed by indexes including the
P value of x2, root mean square error of approximation (RMSEA), com-
parative fit index (CFI), global fit index (GFI), and the normed fit index
(NFI) (Bryman and Cramer, 1994; Jaccard and Wan, 1996; Schumaker
and Lomax, 2004). AMOS 7.0 software was used to conduct the path
analysis.

3. Results

3.1. Statistical descriptions

Statistical descriptions of GHG emissions, urban form, socio-
demographics and travel attitudes are detailed in Table 1. The average
GHG emissions of 45 sample communities was 1.699 kg CO2e
household−1·day−1 and 0.594 kg CO2e capita−1·day−1. CO2, CH4 and
N2O account respectively for 97.70%, 1.04%, and 1.26% of the total GHG
emissions.

According to the questionnaire results, walking, bicycling, private
car, taxi, bus, andmotorcycle are themainmodes of residents' transpor-
tation in Xiamen City, and their frequencies are 38.57%, 4.85%, 17.70%,
2.04%, 23.84% and 13.00%, respectively (Fig. 2). In this analysis, walking
and bicycling represent the non-motorized modes of transportation,
and private car, taxi, bus, and motorcycle represent motorized modes
of transportation. The two types of transportation account for 43.42%
and 56.58%, respectively, indicating that the public is mainly dependent
on motorized vehicles. As shown in Fig. 2, although in terms of travel
frequency the bus is much higher than the private car, yet the private
car dominates the GHG emissions, occupying 77.47%, followed by bus
(13.14%), taxi (6.38%) and motorcycle (3.02%).

We compared the GHG footprint of transportation sector in Xiamen
Citywith severalmega citiesworldwide. As shown in Table 2, per capita
GHG of Xiamen is close to the level of New York City, which is less than
Beijing, the capital city of China. However, intensity of transportation
GHG of Xiamen is significant higher than cities in developed countries
such as Tokyo Metropolitan, Great London and cities in developing
countries like NewDelhi. In addition, per capita GHG of Xiamen exhibits
a stable increasing trend from 2009 to 2014. This implies that
implementing low carbon strategies to mitigate GHG emissions in
transportation sector is urgent and stressful.

3.2. Correlation analysis

Fig. 3 represents the correlations among residents' transportation
GHG emissions, urban form, socio-demographics and travel attitudes.
Urban form, except for shape compactness and shape complexity, dis-
plays a close correlation with residents' transportation GHG emissions,
inwhichpopulation density, land usemix, road connectivity and bus ac-
cessibility exhibit significant negative correlations. However, only edu-
cational level in the socio-demographics is significantly correlated



Table 2
GHG footprint of transportation sectors in major cities.

City/mega metropolitan
region

GHG
(tons/capita)

Year Source

Xiamen 1.14 2009 Xiamen Municipal Development
and Reform Commission (2016)1.26 2010

1.45 2011
1.56 2012
1.71 2013
1.88 2014

Beijing 1.68 2009 Gu et al. (2014); Jiang et al. (2013)
1.89 2011

Tokyo Metropolitan 0.92 2011 Bureau of Environment Tokyo
Metropolitan Government (2017)0.86 2014

New Delhi 0.77 2009 Ramachandra et al. (2015)
New York City 1.36 2011 New York City Mayor's Office of

Sustainability (2017)1.82 2015
Great London 0.91 2014 Department for Business, Energy,

and Industrial Strategy (2017)0.90 2015
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with transportation GHG emissions. Similarly, willingness to ride the
bus is the only factor in travel attitudes that displays significant
correlation.

Inter-correlations also exist among the factors urban form, socio-
demographics and travel attitudes, suggesting that these factors are
not independent, but mutually influential. For example, population
density is significantly positively correlated with road connectivity,
bus accessibility and willingness to ride the bus. Road connectivity,
bus accessibility, willingness to walk and willingness to ride the bus
are significantly positively interrelated. Educational level is significantly
positively correlatedwith household income,willingness to ride the bus
and willingness to walk.

We built a regression model to further analyze the effects of these
factors on residents' transportation GHG. Considering the potential
multicollinearity induced by inter-correlations between variables,
Fig. 3. Correlationmatrix between variables (Statistically significantmeans that correlation coe
significant at p b 0.05 level.)
ridge regression was employed. As shown in Table 3, population den-
sity, land use mix, road connectivity, bus accessibility, education level
and the willingness to bus are the significant factors influencing resi-
dents' transportation GHG, which is consist with the results from corre-
lation analysis. However, the ordinary regression model is incapable of
revealing the direct and indirect causal relationships between influenc-
ing factors and GHG emissions.

3.3. Path analysis model and validation

Referring to the results from correlation analysis, six key variables
that significantly correlated with residents' transportation GHG emis-
sions—including population density, land use mix, road connectivity,
bus accessibility, educational level and willingness to ride the bus—are
involved in the hypothesis path analysis model. Moreover, their paths
affecting GHG emissions and interactions are identified according to
general logic, previous studies and correlation coefficients that are sig-
nificant at the 0.05 or 0.01 level. The hypothesized path analysis
model is shown in Fig. 4. All variables are assumed to have direct effects
on GHG emissions. Population density is assumed to have indirect ef-
fects on GHG emissions through road connectivity, bus accessibility
and willingness to ride the bus. Road connectivity is assumed to have
an indirect effect via bus accessibility, which also is assumed to have
an indirect effect via willingness to ride the bus. In addition, educational
level is assumed to have an indirect effect on GHG emissions through
willingness to ride the bus.

The hypothesized model achieved good fit to data, as demonstrated
by a non-significant x2 value (x2= 15.807, P=0.071 N 0.05), RMSEA=
0.031 b 0.05, CFI= 0.930 N 0.9, GFI= 0.914 N 0.9 and NFI= 0.966 N 0.9.

3.4. Effects of influencing factors on GHG emissions

The final path model and standardized coefficients between vari-
ables are depicted in Fig. 4.
fficients are statistically significant at p b 0.05, while non-significantmeans not statistically



Table 3
Ridge regression model of residents' transportation GHG with its influencing factors.

Independent variables Unstandardized coefficients Standardized coefficients T Sig

B SE(B) Beta

Population density −0.000004 0.000001 −0.251711 −4.600850 0.000083
Land use mix −0.314741 0.119179 −0.168729 −2.640920 0.013370
Road connectivity −0.003081 0.001289 −0.130235 −2.390300 0.023804
Bus accessibility −0.017020 0.013199 −0.071689 −1.289480 0.030778
Shape compactness −0.086591 0.124427 −0.042470 −0.695915 0.492218
Shape complexity 0.033785 0.035438 0.055715 0.953370 0.348561
Family size 0.025535 0.057075 0.027853 0.447387 0.658037
Household income 0.055556 0.055245 0.059190 1.005623 0.323209
Average age of family 0.000813 0.003205 0.015012 0.253515 0.801722
Household education level −0.045990 0.037844 −0.070516 −1.215246 0.034420
Willingness to walk −0.048072 0.053528 −0.053411 −0.898058 0.376813
Willingness to bus −0.079797 0.090653 −0.082990 −0.880244 0.028622
Willingness to bicycle −0.040036 0.057751 −0.041638 −0.693256 0.493860
Constant 0.837025 0.444628 0.000000 1.882530 0.017019

Note: dependent variable is residents' transportation GHG; R Square = 0.693406; F value = 4.523284, Sig F = 0.000336.
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3.4.1. Direct effects
As shown in Table 4, population density, land use mix, road

connectivity, bus accessibility, educational level and willingness to
ride the bus, to different extents, show negative direct effects on resi-
dents' transportation GHG emissions. In terms of the absolute values
of standard path coefficients, the order of direct effects is: population
density (−0.425) N land use mix (−0.303) N road connectivity
(−0.255) N bus accessibility (−0.237) N educational level (−0.195) N
willingness to ride the bus (−0.151). Obviously, urban form, especially
population density, land use mix and road connectivity, prove to be the
major factors influencing residents' transportation GHG missions di-
rectly, in comparison to socio-demographics and travel attitudes.
3.4.2. Indirect effects
Population density, road connectivity, bus accessibility and educa-

tional level exhibit different degrees of indirect effects as well. In
Fig. 4. Path analysismodelwith standardized coefficients (the thickness of the line indicates the
is significant at the 0.001 level; **indicates coefficient is significant at the 0.01 level; * indicates
particular, population density, through road connectivity, bus accessi-
bility andwillingness to ride the bus, imposes wide and complex effects
on GHG emissions. It also shows the largest total indirect effects
among the studied factors, with a standard coefficient of −0.349. Al-
though much lower than population density, indirect effects of other
factors onGHGemissions are also significant. For example, road connec-
tivity—through bus accessibility—also shows a negative indirect effect,
with a standard coefficient of −0.129. Mediated by willingness to ride
the bus, both bus accessibility and educational level show negative indi-
rect effects, with coefficients of −0.035 and –0.047, respectively. Over-
all, the order of indirect effects is: population density (−0.349) N road
connectivity (−0.129) N educational level (−0.047) N bus accessibility
(−0.035).

3.4.3. Total effects
Total effects equal direct effects plus indirect effects, and the order of

total effects is: population density (−0.774) N road connectivity
magnitude of the effect; arrows indicate the direction of the effect. *** indicates coefficient
coefficient is significant at the 0.05 level.)



Table 4
Direct, indirect and total effects of urban form, socio-demographics and travel attitudes on
urban residents' transportation GHG emissions.

Variables Direct effects Indirect effects Total effects

Population density −0.425 −0.349 −0.774
Land use mix −0.303 −0.303
Road connectivity −0.255 −0.129 −0.384
Bus accessibility −0.237 −0.035 −0.272
Household educational level −0.195 −0.047 −0.242
Willingness to ride the bus −0.151 −0.151
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(−0.384) N land use mix (−0.303) N bus accessibility (−0.272) N edu-
cational level (−0.242) N willingness to ride the bus (−0.151). Among
the studied influencing factors, the absolute value of the standard path
coefficient of population density is above 0.5, indicating a large effect
on urban residents' transportation GHG emissions. Both road connectiv-
ity and land usemix are N0.3, suggesting upper-middle total effects. The
coefficients of bus accessibility, educational level andwillingness to ride
the bus are between 0.1 and 0.3, indicating lower-middle total effects.

4. Discussion

4.1. Comparative contributions of urban form, socio-demographics and
travel attitudes

The factors studied, and the mechanisms whereby they influence
urban residents' transportation GHG emissions, are diverse and com-
plex, because they can come from different sources such as urban
form and socio-demographics aswell as from residents' travel attitudes,
and may closely interact with each other. In the face of this puzzle, it is
important for policy makers to understand the complex mechanisms
and quantitatively assess their impacts, so as to formulatemore efficient
mitigation measures for transportation GHG emissions. The present
study not only employed a wide range of indictors across urban form,
socio-demographics and travel attitudes, but also took their interrela-
tionships into consideration, making it possible to compare the respec-
tive contributions of urban form, socio-demographics and travel
attitudes and to distinguish their direct as well as indirect effects. The
results from this case study of Xiamen City demonstrate that, although
the direct effects of factors on transportation GHG emissions are
dominant, the majority of factors also show indirect effects, to different
extents, through respective paths among factors, because of their inter-
relationships. Therefore, inmitigation planning and implementation for
the transportation sector, decision makers should fully consider all the
factors as well as their interrelationships, in order to make mitigation
more efficient.

The present study reveals that the impact of urban form on
residents' transportation GHG emissions is considerably greater than
socio-demographics and travel attitudes. As demonstrated by the
correlation analysis and path analysis, urban population density, land
use mix, road connectivity and bus accessibility exhibit different
degrees of impact on residents' transportation GHG emissions, with
relatively high coefficients. However, only educational level in socio-
demographics and willingness to ride the bus in travel attitudes, are
found to have significant effects on residents' transportation GHG emis-
sions, with relatively lower coefficients. This result is consistent with
previous studies which conclude that urban form plays a more impor-
tant role in travel behavior than do socio-demographics and residents'
travel attitudes. Several case studies by Salon, 2006 in New York City,
Zhou and Kockelman, 2008 in Austin, Cao, 2010 in California, Bhat
et al., 2009 in San Francisco revealed that built environment—majorly
urban form—accounted for 50% to 90% of total influence on travel be-
havior. It well known that residents' transport GHG emissions vary
with household socio-demographics, e.g. income, education, employ-
ment, age, however socio-demographic indicators that are statistically
significant are different in previous empirical studies. Hence, we argue
that socio-demographics and residents' transport GHG emissions are
not simply linearly correlated. Travel-attitude-based residential self-
selection is receiving increasing attention, although its role on travel be-
havior and transport GHG emissions is still controversial. Many studies
reviewed by Cao et al., 2009 suggests that the built environment's effect
on travel behaviors is influenced by residential self-selection, while
works by Chatman, 2009; Ewing and Cervero, 2010; Naess, 2014 show
that residential self-selection seems not alter the effects of the built
environment. Here we find that resident's travel attitudes exert a direct
influence on transport GHG emissions with a relatively small effect
compared to urban form and socio-demographics, which may contrib-
ute to explain this controversial issuse.

Even though urban form is the dominant factor, socio-demographics
and residents' travel attitudes also play roles in affecting transportation
GHG emissions. On the one hand, as revealed by this study, enhancing
household educational level and willingness to ride the bus can reduce
residents' transportation GHG emissions, especially educational level,
owing to its additional indirect effect through travel attitudes. On the
other hand, urban form, socio-demographics and travel attitudes
drivers of GHG emissions do not work in isolation; on the contrary,
they become more effective when combined. Therefore, enabling and
encouraging citizens and especially families—through education—to be-
comemore aware of possibilities for environmentally friendly transpor-
tation modes would help reduce carbon emissions.

It is worth paying extra attention to population density, since it is
significant and large in both direct and indirect effects on residents'
transportation GHG emissions. Previous literature about the relation-
ship between urban density and transportation GHG emissions has
also shown that urban density is significantly and negatively correlated
with per capita transportation GHG emissions (Brownstone and Golob,
2009; Cervero and Murakami, 2010; Clark, 2013). Urban density di-
rectly affects GHG emissions in two main ways. On the one hand, high
population density creates less average energy consumption of passen-
gers in cars and buses than does low population density (Lee and Lee,
2014). On the other hand, higher population densities possess of high
and concentrated public transportation demand that is necessary for
the supply of diverse public transportation infrastructure, however
transportation demand is relative low and dispersed, in built environ-
ment with lower densities, which hinders the switch over to less
energy-intensive transportation modes such as public transportation,
walking, and cycling (Bunting et al., 2002; Forsyth et al., 2007). In addi-
tion, population density does not work in isolation, but affects road con-
nectivity and bus accessibility, thereby posing indirect effects on
transportation GHGs as well. Therefore, urban population density is
the dominant driver of transportation GHGemissionswhen considering
both direct and indirect effects. In addition to population density, land
use mix, road connectivity and bus accessibility also impact transporta-
tion GHGemissions directly and indirectly.Mixed land use promotes di-
versity and integration of land uses at a given scale, and thus can reduce
travel distances and facilitate walking and non-motorized modes of
travel, thereby reducing aggregate amounts of vehicular movement
and associated GHG emissions (Kockelman, 1997; Permana et al.,
2008). High connectivitymeans adequate andwell-designed road inter-
sections, which improve convenience of travel, thereby reducing VKT
(Ewing and Cervero, 2001; Salon et al., 2012). Moreover, high connec-
tivity normally relates to easier access to bus stops, and high bus acces-
sibility can promote the use of public transportation and therefore
reduce GHG emissions.

4.2. Implications

Over the past four decades, the overarching trend displays a persis-
tent decline in population density of most Chinese cities like Xiamen.
As shown in Fig. 5-a, the built-up area of Xiamen City has been
sprawling rapidly, leading to a decline in population density. Accompa-
nied by this trend, however, is a substantial increase in per capita



Fig. 5. Built-up area sprawl and population density declining trends in urban built environment of Xiamen City and other Chinese cities.
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transportation GHG emissions. The average population density has also
been declining due to urban sprawl, when looking at 661 Chinese cities
(Fig. 5-b). According to the current urban planning of Xiamen City, pop-
ulation density will be lower than the current level by 2020. In addition,
it is of highly probable that the average urban population density of Chi-
nese cities will continue to drop owing to rapid lower-density urbaniza-
tion (Bai et al., 2014). Therefore, it is foreseeable that great potential for
GHG mitigation lies in the transportation sector for Xiamen and for
other Chinese cities, if current urban sprawl and declining population
density are not reversed.

As the vital components of global change, urbanization and climate
change are tightly related. Cities already account for 70% of global green-
house gas emissions and house more than half of humanity (Acuto,
2016). By 2050, 68% of the world population are projected to live in
urban areas, and the rapid urbanization are projected to add 2.5 billion
to the world's urban population, with majority of this growth happen-
ing in developing countries in Asia and Africa (United Nations, 2018).
Consequently, transportation demand and vehicle kilometers traveled
in the urbanizing area is about to increase massively over the next
few decades, leading to severe challenges for carbon mitigation in
transportation sector. Moreover, urban expansion and spatial form
change, household socio-demographics transition and residents' travel
attitudes change in the process of urbanization will also add huge un-
certainties. Sustainable transportation is key to successful GHG reduc-
tion in transportation sector, since it is ‘green’ and has low impact on
the environment, which is of multiple benefits in the senses of society,
environment and climate change mitigation (Jeon and Amekudzi,
2005). Hence, measuring the relative roles of different influencing
factors and taking full account of their interrelationships in decision-
making is vital and fundamental for planning, implementation and
optimization of sustainable transportation.

4.3. Limitations

While this study expands our understanding of the factors influenc-
ing urban residents' transportation GHG emissions, it also labors under
several limitations that future researchneeds to address. First, residents'
travel behavior recorded in this study only include local activitieswithin
city, and the resulting GHG emissions is direct emissions rather than
life-cycle emissions due to data limitation. Second, more aspects of fac-
tors—beyond urban form, socio-demographics and travel attitudes—
need to be expanded, for further understanding the driving forces of
urban residents' transportation GHG emissions. Third, obtaining active
data on transportation behavior via questionnaire normally results in
subjective error from participants. Moreover, the biases may also
occur as the result from survey design (e.g., time frame, recording
destinations and distance estimation). Recently, urban residents'
movement data recorded by mobile devices have been able to serve as
an innovative data source that could be used in future studies.

5. Conclusion

This study developed a pathmodel and analyzed the direct and indi-
rect effects of urban form, socio-demographics and travel attitudes on
urban residents' transportation GHG emissions. As demonstrated by a
case study of Xiamen City, several major conclusions can be drawn.



1344 L. Xu et al. / Science of the Total Environment 644 (2018) 1336–1345
(1) The drivers of urban residents' transportation GHG emissions do not
work in isolation. In addition to the direct effects, indirect effects also
play a pivotal part owing to the interrelationships among factors.
(2) Urban form, characterized by high population density, land use
mix, road connectivity and bus accessibility; socio-demographics, char-
acterized by high educational level; and travel attitudes, characterized
by high willingness to ride the bus; are all applicable to carbon mitiga-
tion in the transportation sector. Urban form plays a leading role, in
comparison to household socio-demographics and travel attitudes.
(3) Population density is the dominant factor influencing urban resi-
dents' transportation GHG emissions, suggesting that urban sprawl is
harmful to carbon mitigation.

The findings of this study have important policy implications.
(1) Policy makers need to integrate broader factors and fully consider
their interrelationships during decision-making. Pursuing one of them
in isolation is insufficient for lowering emissions. (2) For rapid urbaniza-
tion, urban planning—especially in developing countries—should focus
on low-carbon-friendly urban forms, withmore attention to urban den-
sity, land usemix, connectivity and accessibility, and, most importantly,
avoiding urban sprawl.
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