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A B S T R A C T   

Evaluating the efficacy of air pollution control policies is an essential part of the decision-making process to develop new 
policies and improve existing measures. Since 2005, Fujian Province of Mainland China and Taiwan across the Taiwan 
Strait have both implemented aggressive air pollution control policies designed based on different principles, but a 
comprehensive evaluation of these control policies on PM2.5pollution levels is still lacking. In the current study, we 
assessed the effects of these policies in the Taiwan Strait Region from 2005 to 2018 using full-coverage, high-resolution 
PM2.5generated by a satellite-driven machine learning model. A ten-fold cross-validation for our prediction model 
showed an R2value of 0.89, demonstrating that these predictions can be used for policy evaluation. During the 14-year 
period, PM2.5levels in all areas of Fujian and Taiwan underwent a significant decrease. Separate regression models for 
policy evaluation in Taiwan and Fujian showed that all considered policies have mitigated PM2.5pollution to various 
degrees. The Clean Air Action Plans (CAAP) is the most effective control policy in Taiwan, while the Action Plan of Air 
Pollution Prevention and Control (APPC-AP) and Three-year Action Plan for Blue Skies (3YAP-BS) as well as their 
provincial implementation plans are the most successful in Fujian. The effectiveness of control policies, however, varies 
by land-use types especially for Taiwan.   

1. Introduction 

Beyond visibility and ecosystem functioning, fine particulate matter 
(PM2.5, particles with aerodynamic diameter smaller than 2.5 μm) is 
also shown to pose threats to public health (Shaddick et al., 2018;  
Tutsak and Kocak, 2019; Wu et al., 2018; Xu et al., 2013). Globally, 
ambient PM2.5 has led to serious adverse health effects including car-
diovascular and respiratory diseases and premature death (Chen et al., 
2017; Hoek et al., 2013; Shah et al., 2013). In China, economic progress 
has come with increased occurrence of heavy PM2.5 pollution episodes 
in last decade, especially for the most developed regions (Deng et al., 
2018; Xiao et al., 2017). The regions across the Taiwan Strait (TSR), 
covering Fujian of Mainland China and Taiwan, is flanked by two 

highly polluted regions in China, i.e., the Yangtze River Delta (YRD) to 
the north and the Pearl River Delta (PRD) to the south. Endowed with a 
unique geographical location and abundant resources, the TSR is ex-
periencing rapid urbanization and industrialization which have also 
given rise to accelerated emissions of PM2.5 from fossil fuel burning, 
urban sprawl and motor vehicles (Wu et al., 2018; Xu et al., 2013). 
PM2.5 pollution events have occurred frequently in the three me-
tropolitan areas of Taiwan (Taipei, Taichung and Kaohsiung) due to 
booming economic growth, limited land and high population density 
(Zhou et al., 2019). In Fujian, due to increasing emissions as well as 
regional transport, its PM2.5 level has exceeded Chinese National Am-
bient Air Quality Standard I and differs between coastal cities and in-
land cities owing to the topography (Deng et al., 2014; Fu et al., 2018). 
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To reduce the air pollution, a growing number of control policies were 
set for both Fujian and Taiwan in the past 15 years, but policies tailored 
to PM2.5 pollution were only implemented in the last few years (Chen 
et al., 2019; Ma et al., 2019). 

Evaluating policy effectiveness can verify successful measures and 
support the formulation of air pollution prevention and control policies 
in the future (Chen et al., 2019; Wang et al., 2018). Several emerging 
studies have evaluated historical control policies as well as their asso-
ciation with the trend of air pollution (Hu et al., 2010; Vennemo et al., 
2009). Vennemo et al. (2009) proposed that China's progress in dif-
ferent regions in solving air pollution problems is lopsided, possibly due 
to the different policies implemented at local, regional and national 
scales. To analyze the effectiveness of different policies in typical Chi-
nese cities, Hu et al. (2010) studied the air pollution problems, air 
pollution control measures and the effects of these measures for each 
city, concluding that local governments should develop stricter control 
measures suited to their regions. Jin et al. (2016) studied the devel-
opment of China's air pollution prevention and control policies since the 
1980s, drawing the conclusion that China's policies at emission reduc-
tion before 2005 were ineffective. This study also indicated an in-
creasingly regional air pollution problem dominated by PM2.5 and 
ground ozone (O3) during the implementation of the 11th Five-Year 
Plan (2006–2010) as well as significant changes in control policies in 
eastern China after the year 2013. Ma et al. (2019) used satellite PM2.5 

data from 2005 to 2017 to evaluate Mainland China's control policies, 
proving that these policies have led to a big drop in PM2.5 since the 
implementation of the toughest-ever clean air policy in China after 
2013. This finding was further confirmed by Zhang et al. (2019). 
However, assessments of the long-term efficacy of air pollution policies 
on PM2.5 are limited (Buckley and Mitchell, 2010; Carnevale et al., 
2008; Gao et al., 2016; Li et al., 2019; Vlachokostas et al., 2009). Even 
fewer comparisons exist on the effectiveness of control policies guided 
by different theories and implemented in different political system. 

Owing to similar meteorological conditions and close geographic 
position, Fujian and Taiwan are reported to experience comparable 
PM2.5 transportation from emission hotspots in East China (Deng et al., 
2014). However, being a part of Mainland China, Fujian implements 
both national and regional air pollution policies, with regional policies 

usually extending those of the national level. On the other hand, 
Taiwan has set the same PM2.5 concentration standard as United States 
(Yang et al., 2017a), and designed its control policies mostly following 
the examples of developed countries in North America and Europe. 
Over the past 15 years, the PM2.5 characteristics and trends have been 
affected by the control policies implemented in these two regions. 
Hence the TSA presents a unique opportunity to compare the efficacy of 
policies designed under two distinct conceptual frameworks. 

An accurate spatiotemporal PM2.5 dataset is the foundation for 
evaluating the performance of air pollution policies (Geng et al., 2017; 
Ma et al., 2016). Current studies mainly rely on chemical transport 
models (CTMs) and remote sensing techniques to predict the PM2.5 

concentration. The uncertainties of CTM-simulated PM2.5 are often high 
and vary in space (Geng et al., 2017). CTMs must consider existing 
policies and their designed impacts in the development of their emis-
sions inventory. As a result, their simulation results are not proper to 
evaluate the actual impact of these policies. Data-driven models using 
statistical and machine learning approaches were applied in TSR and 
the adjacent region in recent years (Chu and Bilal, 2019; Jung et al., 
2018; Wu et al., 2018; Yang et al., 2017, 2019). For example, Chu and 
Bilal (2019) and Jung et al. (2018) mapped the PM2.5 concentration of 
Taiwan respectively based on geographically temporally weighted re-
gression with random sample consensus modeling (R2 = 0.83) and a 
linear mixed effects (LME) model (R2 = 0.66–0.77). Recent machine 
learning algorithms such as the artificial neural networks (Di et al., 
2016) and random forests (RF) (Huang et al., 2018) using high-re-
solution satellite-derived aerosol optical depth (AOD) datasets gener-
ated from the Terra and Aqua instruments like the Multi-Angle Im-
plementation of Atmospheric Correction (MAIAC) AOD for PM2.5 

prediction have reported good model performance with high R2 values. 
The objective of this study is to evaluate the effects of air pollution 

control policies on PM2.5 concentration in the TSR from 2005 to 2018. 
Based on long-term and high-resolution monthly PM2.5 concentration 
provided by our PM2.5 prediction model, evaluation of the major con-
trol policies implemented in TSR will be conducted. Finally, the most 
effective policies in Taiwan and Fujian during the 14-year period will 
be identified and the effectiveness of control strategies on the PM2.5 

concentration by land-use types will be assessed. 

Fig. 1. Spatial distribution of the ground monitors in the TSR. The background shows the elevation of the study domain.  
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2. Data and methods 

2.1. Study area 

Lying in the southeast of China, Fujian and Taiwan are both areas 
with mountainous landscapes (Fig. 1.). The populations of Fujian and 
Taiwan are 38.39 million and 23.49 million, respectively (Fu et al., 
2018; Wu et al., 2018). Southwest Taiwan was the most polluted area, 
in particular Kaohsiung City and its neighborhood. Previous studies 
found that the major source of PM2.5 in Kaohsiung and Taichung is 
industrial emissions and air masses traveling from Northern China 
(Chen et al., 2014). The most polluted areas in Fujian are coastal cities 
such as Quanzhou and Zhangzhou (Xu et al., 2013), with local pollution 
mainly attributed to transportation, industry, and inflows from outside 
areas. In order to acquire adequate monitoring data, a 50-km buffer 
around Fujian was created in this study. 

2.2. Data 

2.2.1. Data sources and processing 
Daily mean PM2.5 concentrations from 2005 to 2018 from 188 air 

quality monitors were collected from the China National Environmental 
Monitoring Center (http://www.pm25.in/), local Environmental 
Monitoring Centers of Xiamen city, Quanzhou City and Zhangzhou city 
in Fujian and Taiwan Environmental Protection Administration 
(https://airtw.epa.gov.tw). Additionally, we downloaded visibility data 
from 67 weather stations in our study domain through the National 
Centers for Environmental Information (NCEI) (Liu et al., 2017). 

Multiple data products from Terra and Aqua satellites were utilized 
in our study. As illustrated in Supplementary Text S 1.1, we down-
loaded the MAIAC MODIS AOD product (MCD19A2) at 1 km resolution 
from NASA's Level-1 and Atmosphere Archive & Distribution System 
(https://ladsweb.modaps.eosdis.nasa.gov/) (Liang et al., 2018), daily 
cloud fraction product (Aqua and Terra Collection 6 Level 2 cloud 
products, MYD06_L2 and MOD06_L2) at 1 km resolution (https:// 
modis.gsfc.nasa.gov/) (Bi et al., 2019), and MODIS Fire/Hotspot data 
from the Fire Information for Resource Management System (FIRMS, 
https://earthdata.nasa.gov/earth-observation-data/near-realtime/ 
firms) (Huang et al., 2018). We obtained the Normalized Difference 
Vegetation Index (NDVI) data from MODIS 1-month global NDVI da-
taset at 1 km resolution (MOD13A1). Digital elevation of 1 arc-second 
(~30 m) resolution was downloaded from Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) Global Digital 
Elevation Model (GDEM). 

The ERA5 (C3S, 2017) is the 5th generation re-analysis of European 
Center for Medium-Range Weather Forecast (ECMWF) for the global 
climate and weather. The ERA5 hourly dataset and monthly meteor-
ological dataset (Contains modified Copernicus Climate Change Service 
Information [2005–2018]) at 31 km resolution were obtained for the 
AOD gap-filling and PM2.5 prediction, respectively (Text S 1.2). As-
similated 3-hourly AOD data (Randles et al., 2017) was extracted from 
the Modern-Era Retrospective analysis for Research and Applications 
(MERRA, Version 2) and we calculate the averages of AOD values and 
hourly ERA5 meteorology data from 9:00 a.m. to 3:00 p.m. to match the 
satellite overpass time (Xiao et al., 2018). Moreover, MERRA PM2.5 

concentration was calculated based on five MERRA-2 simulated PM2.5 

species including black carbon, sulfate, sea salt, organic carbon and 
dust (Provencal et al., 2017). 

The land cover data for year 2005, 2008, 2010 and 2015 from the 
Chinese land use/land cover (CNLUCC, http://www.resdc.cn/) (Xu 
et al., 2018) data was used in this study. This high-resolution dataset 
was generated by supervised classification and visual image inter-
pretation based on Landsat TM/ETM images. Road network information 
for year 2017 were obtained from the Google road map (http://www. 
bigemap.com/), while those of year 2010 were interpreted visually 
based on the Google Earth's satellite-photo images and road data in 
2010. The UN WPP-Adjusted version of Gridded Population of the 
World (GPW) (Center for International Earth Science Information 
Network - CIESIN - Columbia University 2018) in 2005, 2010, 2015, 
and 2020 were linearly interpolated to calculate 1-km annual popula-
tion density from 2005 to 2018. 

Monthly means of all aforementioned daily datasets were calculated 
and we used the MAIAC 1-km grid to spatially align all datasets (Text S 
1.3). The road length and the proportions of different land use cate-
gories were also calculated in each MAIAC Grid. We also calculated the 
fire spots counts of 20-km, 35-km, 50-km, and 75-km radius buffers in 
each month. 

2.2.2. An overview of major air pollution control policies in Fujian and 
Taiwan 

Several air pollution control policies have been implemented from 
2005 to 2018 in the TSR (Table 1, Table S1). Early-stage environmental 
policies in Mainland China include the 11th (2006–2010) and 12th 
(2011–2015) Five-year Plan on Environmental Protection (11th and 

Table 1 
Major air pollution control policies of Fujian and Taiwan from 2005 to 2018.     

Regions Policies Implementation period  

Fujian 1. 11th Five-year Plan on Environmental Protection and simultaneous Energy Conservation and Emissions Reduction; 
2. 11th Fujian Five-year Plan on Environmental Protection and simultaneous Fujian Energy Conservation and Emissions Reduction 

2006–2010; 
Actual start at 2007 

1. 12th Five-year Plan on Environmental Protection and simultaneous Energy Conservation and Emissions Reduction; 
2. 12th Fujian Five-year Plan on Environmental Protection and simultaneous Fujian Energy Conservation and Emissions Reduction 

2011–2015; 
Actual start at 2012 

Air Pollution Prevention and Control in Key Regions 2011–2015; 
Actual start at 2012 

1.Action Plan of Air Pollution Prevention and Control; 
2. Fujian Action Plan of Air Pollution Prevention and Control 

1. 2013–2017; 
2. 2014–2017 

Amendments to the Law of the People's Republic of China on the Prevention and Control of Atmospherics Pollution 2016–2018 
1. Three-year Action Plan aims for Blue Skies; 
2. Fujian implementation plan of Three-year Action Plan aims for Blue Skies 

2018–2020 

Taiwan 1. 7th amendments to the Air Pollution Control Act; 
2. Amendments to standards for the sulfur content of diesel fuels 

2011–2018 

1. 8th amendments to the Air Pollution Control Act; 
2. Amendments to standards for the sulfur content of automobile gasoline; 
3. 5th emission standard of diesel and gasoline vehicles 

2012–2018 

Innovative PM2.5 Control Strategies 2014 
1. Clean Air Action Plans; 
2. Amendments to Clean Air Action Plans 

1. 2015–2016; 
2. 2016–2019 

14 + N Air Pollution Control Strategy 2017–2019 
1. Air Pollution Control Action Plan; 
2. 9th Amendments of Air Pollution Control Act 

1. 2018–2040; 
2. 2018- 
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12th FYP-EP) and simultaneous Energy Conservation and Emissions 
Reduction policies (i.e., 11th FYP-ECER and 12th FYP-ECER). For each 
national policy, Fujian also issued its corresponding provincial mea-
sures, i.e., 11th FJFYP-EP, 12th FJFYP-EP, 11th FJFYP-ECER, and 12th 
FJFYP-ECER. These policies used emission reduction rates of SO2, en-
ergy consumption, and NOx as their primary performance indicators. 
The 12th FYP on Air Pollution Prevention and Control in Key Regions 
(APPC-KR) was the first plan with air quality goals in Mainland China. 
From then on, with specific PM2.5 concentration goals and benchmark 
year, the Action Plan of Air Pollution Prevention and Control (APPC- 
AP) from 2013 to 2017 and the Three-year Action Plan aims for Blue 
Skies (3YAP-BS) from 2018 to 2020 as well as their corresponding local 
plans in Fujian (FJAPPC-AP and FJ3YAP-BS) were also implemented. 
Furthermore, amendments to the Law of the People's Republic of China 
on the Prevention and Control of Atmospherics Pollution (ALPRC- 
PCAP) were passed in 2015 and took effect in 2016. Fujian's control 
policies has gone through three stages, i.e., total emission control, air 
quality improvement, and finally economic and industrial restructuring 
(Ma et al., 2019). Overall, Fujian's policies still highly rely on specific 
and costly local actions (Wong and Karplus, 2017). 

Taiwan began to monitor PM2.5 concentrations in 2005, but control 
policies have not kept up with monitoring due to concerns of their 
potential impact on the economy (Liu, 2018). Control policies before 
2014 include the 7th and 8th amendments to the Air Pollution Control 
Act (7th AAPCA and 8th AAPCA), amendments on standards for the 
sulfur content of automobile gasoline and diesel fuels (ASSAG and 
ASSAD) and the 5th emission standard of diesel and gasoline vehicles 
(5th ESDGV). Stronger air pollution policies were implemented after 
2014 such as the Innovative PM2.5 Control Strategies (IPCS) and Clean 
Air Action Plans (CAAP), the 14 + N Air Pollution Control Strategy 
(14 + N APCS) and Air Pollution Control Action Plan (APCAP). Ad-
ditionally, the 9th Amendments of Air Pollution Control Act (9th 
AAPCA) was issued to guarantee the application of two aforementioned 
policies. As may be concluded from Supplementary Table S1, there was 
an upward trend in the stringency of Taiwan's policies, especially re-
garding air-pollutant emission standards from industrial and vehicle 
sources as well as emission reduction measures (Chen et al., 2019; Lin 
et al., 2018). Unlike the policies in Fujian, Taiwan's policies rely sig-
nificantly on economic incentives and considers public feedbacks. 

2.3. Methods 

2.3.1. AOD gap-filling modeling 
Since satellite-retrieved AOD has non-random missingness due to 

cloud cover, directly averaging available daily AOD values to derive 
monthly means likely introduces biases into this important predictor of 
PM2.5. Following Bi et al. (2019), we developed a random forest (RF) 
model to fill the AOD data gap at the daily level before calculating 
monthly averages. RF model can utilize bootstrapped dataset and ran-
domly select a subset of the predictors at each node results in con-
structing wide variety of trees. In this model, we incorporated pre-
dictors of MERRA AOD, cloud fraction, humidity, temperature and 
coordinates of the grid centroids in our RF gap-filling model (S 2.1). We 
adopted the method of three-rolling day samples for the middle day 
model proposed by Bi et al. (2019). Instead of using the full dataset, we 
randomly sampled 10,000 grid cells with predicted PM2.5 levels each 
day to speed up model training (if there are less than 10,000 grid cells 
available on a given day, all the samples were retained). 

2.3.2. PM2.5 prediction modeling 
We developed a random forest model to estimate monthly mean 

PM2.5 concentrations with predictors such as monthly mean gap-filled 
AOD, land use variables, meteorological parameters, population den-
sity, visibility and fire spots (S 2.2). We also built a model without AOD 
to examine the impact of gap-filled AOD on the prediction of PM2.5 

concentrations. We used 10-fold temporal and spatial cross-validation 

(CV) techniques in the full domain and in Fujian and Taiwan separately 
to evaluate model performance. 

2.3.3. Policy efficacy evaluation 
Using model-predicted PM2.5 annual average concentrations as the 

dependent variable, we developed a multivariate linear regression 
model to evaluate the effect of the policies implemented in Fujian and 
Taiwan separately. The independent variables include land use vari-
ables (percentage of forest, developed land and length of main roads), 
meteorological parameters (temperature, surface pressure, wind speed 
PBLH, surface albedo, total cloud cover, CAPE and precipitation), and 
the policies implemented in Fujian and Taiwan (Table 1). We included 
meteorological parameters in this model to account for their impact on 
the interannual variabilities of PM2.5 levels. Policies that were im-
plemented during the same time periods or followed the same frame-
work were combined to one binary indicator variable. For instance, the 
APPC-KP, 12th FYP-EP, 12th FYP-ECER and their corresponding pro-
vincial measures in Fujian were all designed based on the 12th Five- 
Year Plan, and the actual start time of these policies were all in 2012, 
hence we combined those policies into one variable. Our policy eva-
luation model is as follows: 

= + + + + +

+ + + +

+ + + + …

+ +

PM T RH Si Fal SP

TCC Pop RoadSum Developed

Forest Policy Policy Policy

Policy

2.5q,y 0 1 q,y 2 q,y 3 10q,y 4 q,y 5 q,y

6 q,y 7 q,y 8 q,y 9 q,y

10 q,y 11 1q,y 12 2q,y 13 3q,y

n nq,y q,y (1) 

where PM2.5q,y is the PM2.5 annual concentration at grid cell q of year y 
(1,994,258 and 1,567,020 predictions for Fujian and Taiwan, respec-
tively); β0 is the intercept term; β1 to βn denote the location specific 
slopes in year y; Tq,y, RHq,y, Si10q,y, Falq,y, SPq,y and TCCq,y are the annual 
mean temperature, relative humidity, wind speed, albedo, surface 
pressure and total cloud cover at grid cell q in year y respectively; Popq,y 

is population density; RoadSumq,y, Developedq,y and Forestq,y are the 
length of all roads and the percentage of developed land and forest; and 
εq,y is the error term; Policy1…..n represents implementation situation of 
each policy at grid cell q in year y. This model was also built for each 
land-use type (developed land, forest, farmland and grass) separately. 

3. Results 

3.1. Performance of PM2.5 prediction model 

There were 16,540 observations in our training dataset, including 
12,389 in Taiwan and 4151 in Fujian. For Taiwan, the lowest monthly 
PM2.5 concentration occurred in Pingtung in June 2016 (2.3μg/m3), 
while the highest was in December 2007 in Kaohsiung (94.7 μg/m3). 
PM2.5 concentration in the west of the Taiwan island is much higher 
than in the east. The lowest and highest monthly observations in Fujian 
are 6.07 μg/m3 near Zhangzhou in September 2017 and 86.4 μg/m3 in 
Tongan in August 2015. Generally, the PM2.5 measurement in the 
economically advanced southeastern seaboard is higher than the inland 
hilly area in Fujian. When assessed together, the TSR is a less polluted 
region compared to the rest of China, but its PM2.5 concentration is 
three times that of the United States (Hu et al., 2017). 

Our AOD gap-filling models (Text S Eq. (2)) resulted in mean OOB 
R2 values of 0.94 and 0.95 for Terra and Aqua AOD, respectively. We 
then averaged gap-filled monthly mean Terra and Aqua AOD as a 
predictor as Text S Eq. (3) to estimate 1-km monthly PM2.5 con-
centrations. The overall CV, spatial CV and temporal CV R2s of the 
prediction model were 0.89, 0.83 and 0.82, respectively (Fig. S1 (a), 
Fig. S2 (a), Fig. S2 (b)). In addition, the RPE and RMSE for monthly 
PM2.5 predictions were 15% and 4.4 μg /m3, respectively, indicating 
good agreement between model predictions and ground measurements. 
Fig. S1 (b) shows the variable importance rankings for the predictors in 
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model. Year, visibility, AOD, surface albedo and NDVI were the top-five 
important predictors for monthly PM2.5 concentrations. Furthermore, 
the spatial CV R2s for Taiwan and Fujian were 0.85 and 0.73, respec-
tively, and the temporal CV were 0.86 and 0.66, respectively (see Fig. 
S2). 

3.2. PM2.5 spatial and temporal trends in TSR from 2005 to 2018 

According to the predicted annual mean PM2.5 in the TSR (Fig. 2.), 
no significant trends in PM2.5 concentrations were observed in Fujian 
during 2005–2011, but the years of 2007 and 2009 experienced ele-
vated PM2.5 levels of 32.46 μg/m3 and 30.98 μg/m3, respectively. In 
this period, major Taiwanese cities in the southwest such as Tainan, 
Kaohsiung and Taichung, showed a slight decrease in PM2.5 con-
centration while a slight upward trend was found in southeastern 
Taiwan (i.e. Hualian city). 

Dramatic reductions in PM2.5 took place in the TSR after 2012. 
PM2.5 levels in Taiwan dropped ~7 μg/m3 in the period of 2012–2016 
and then plateaued during 2016–2018. Conversely, for Fujian, there 
was a notable drop in PM2.5 concentrations of ~4 μg/m3 in 2012, fol-
lowed by a slight increase of 0.8 μg/m3 between 2012 and 2014, and 
then a significant decrease of ~5 μg/m3 from 2015 to 2018. As shown 
in Supplementary Fig. S3, annual variation rate with linear regression 
in each grid was applied to identify the overall trends from 2005 to 
2018. We noticed that PM2.5 pollution level of all areas in the TSR 
showed a decreasing trend with yearly mean of 14 years decreasing by 
12.07 μg/m3 and p-values for most areas below 0.005. Specifically, the 
PM2.5 level at southern Taiwan and inland suburban areas of Fujian has 
relatively stable variation than that at the hot pots include western 
Taiwan and the coastal zone and urban inland section of Fujian. 

In terms of spatial distribution, industrialized cities and city clusters 
have higher PM2.5 concentrations in the TSR. The most polluted cities of 
Fujian are coastal cities including Putian, Zhangzhou, Quanzhou, and 
Xiamen and northwestern Sanming next to Jiangxi Province. The 
highest PM2.5 levels are in western Taiwan, with Kaohsiung and 

Taichung having the most serious air pollution. Minimum PM2.5 levels 
were found in Longyan of Fujian, and Taitung and Hualien of Taiwan. 
The spatial distribution and temporal variation trends in the annual 
PM2.5 concentration of the TSR showed in Fig. 2 is consistent with 
ground monitor measurements, validating our model's predictive 
power. Supplementary Fig. S4 showed that Xiamen's city center has 
higher concentration than the central park covered by forest (purple 
polygon), demonstrating the value of our high-resolution prediction 
model in resolving fine-scale spatial PM2.5 gradients in the study do-
main. 

3.3. Performance of policy evaluation model 

The regression coefficients of each policy variable with PM2.5 con-
centration for the whole domain and separated by land-use types were 
extracted from the evaluation model of Fujian and Taiwan policies.  
Fig. 3. shows that all the control policies implemented in Fujian and 
Taiwan are significantly negatively correlated with PM2.5 concentra-
tions, indicating that all had some effectiveness for PM2.5 control. As 
indicated by the mean regression coefficients (−5.63 μg/m3 for the 
entire policy implementation period), the CAAP is the most effective 
control policy for Taiwan. It is worth noting that there is a disparity of 
policy effectiveness on PM2.5 concentration of four land-use types 
which becomes greater when the policy is more effective. It can be seen 
from Fig. 3 that most Taiwan policies have been more effective on 
developed land than the other land-use types. This is consistent with the 
above-mentioned finding that the decline of PM2.5 concentration is 
larger in urban areas. 3YAP-BS and APPC-AP, along with their im-
plementations, had the two greatest negative coefficients with −7.7 
and − 4.13 respectively, therefore are the most effective policies in 
Fujian. The disparity of policies effectiveness on different land-use 
types has also occurred in Fujian, yet much less notable when compared 
to Taiwan. 

A comparison of the temporal variations of annual mean PM2.5 

concentration (APC) and annual mean population weighted PM2.5 

Fig. 2. Spatial distributions of annual mean PM2.5 concentrations from 2005 to 2018.  
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concentration (PAPC) as well as the control policies implemented from 
2005 to 2018 are presented in Fig. 4. In general, the trends of APC and 
PAPC in both Taiwan and Fujian are consistent with the implementa-
tion of different policies. Based on the implementation periods and the 
temporal trends of PM2.5 concentration, we could observe four main 
change stages for both Fujian and Taiwan. 

In phase 1 for Fujian (2005–2010), PM2.5 levels decreased slightly 
from 2005 to 2006, increased in 2007, then decreased consistently. 

There were no emission control goals before the release of 11th FYP for 
National and Fujian's Economic and Social Development of China in 
2006. Not until later in 2007 was the Comprehensive Working Plan on 
ECER launched, mainly aiming at reducing sulfur dioxide (the pre-
cursor gas of particle sulfate). As a result, notable improvements were 
observed at the end of 11th FYP from 2007 on (i.e. total reduction of 
8.1% and 6.4% during Phase 1 of APC and PAPC). Phase 2 (2011–2015) 
started with fluctuating PM2.5 levels between 2010 and 2014 followed 

Fig. 3. Regression coefficients of Fujian and Taiwan policies on different land-use types.  

Fig. 4. PM2.5 trends from 2005 to 2018, and corresponding air pollution control policies.  
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by a significant reduction after 2014 (7.0% reduction in APC and 7.4% 
reduction in PAPC for whole phase 2). The National and Fujian pro-
vincial ECER policies during FYP-12 as well as FYP-11 both had limited 
effect on PM2.5 control given the complex mixture of PM2.5 and limited 
effectiveness of emission control. The 12th FYP on APPC-KR of Fujian 
was basically consistent with the Fujian's ECER policy and did not have 
an obvious immediate effect on Fujian's APC and PAPC although the 
APPC-KR still proved to be effective in other heavily polluted regions of 
Mainland China (Ma et al., 2019). With the joint effort with APPC-AP in 
2013 and its implementation rules for Fujian in 2014, Fujian's APC and 
PAPC finally began to fall, reaching 10-year lows of 26.2 μg/m3 and 
29.1 μg/m3 respectively. The APC and PAPC plummeted in the third 
phase (2014–2017) due to APPC-AP in 2013 and the implementation 
rules of APPC-AP further reduced PM2.5 levels by 12.8% for APC and 
16.8% for PAPC in whole phase 3, exceeding the PM2.5 reduction tar-
gets of APPC-AP. Meanwhile, the ALPRC-PCAP was implemented in 
2016 to strengthen existing of policies. Downward trends in PM2.5 

concentration continued in the fourth phase (2018~) with reductions of 
5.8% for APC and 6.8% for PAPC in 2018 alone, mainly attributed to 
the implementation of 3YAP-BS in Fujian and fulfilling the PM2.5 de-
duction goal ahead. 

There were no ambient air quality standards or specific control 
measures for PM2.5 in Taiwan in phase 1 (2005–2011, total reduction of 
APC and PAPC are 2.5% and 9.8%). However, the decline may have 
been caused by the launch or revision of several emission standards on 
stationary and mobile sources. Under the implementation of two 
amendments of the Air Pollution Control Act, especially the 7th 
amendment, PM2.5 concentration continued its decline in phase 2 
(2011–2013, total reduction of APC and PAPC are 8.8% and 7.4%). 
Dramatic reductions in the 3rd phase (2013–2014, total reduction of 
APC and PAPC are 11.7% and 14.3%) may be attributed to the IPCS. 
The last phase 4 (2015–2018, total reduction of APC and PAPC are 
14.2% and 19.6%) had the most significant drop in the last 14 years. 
This was especially pronounced from 2015 to 2017 (total reduction of 
APC and PAPC are 18.5% and 17.7%) due to the CAAP. From 2017 to 
2018, the launch of 14 + N APCS, APCAP and the 9th AAPCA did not 
have immediately detectable effects on the PM2.5 concentration (APC 
increased 5.4%, PAPC decreased 2.4%) probably due to the lag effects 
of policy. 

Overall, the reductions of APC and PAPC in Taiwan are 9.21 μg/m3 

and 14.95 μg/m3 (total reductions of APC and PAPC are 32.6% and 
42.5%), which are larger than that of Fujian, with 7.80 μg/m3 and 
9.07 μg/m3 (total reductions of APC and PAPC are 25.4% and 27%). A 
substantial difference between APC and PAPC for Taiwan and Fujian 
has been that policies in Taiwan were slanted towards residential areas 
while Fujian's policies have relatively consistent effects on PM2.5 levels 
across the region. 

4. Discussion 

4.1. Comparison with PM2.5 models in previous studies 

The RF model developed for Fujian and Taiwan at 1 km resolution 
in this study resulted in a higher R2 value (0.89) and a lower RMSE 
value (4.55 μg/m3) than the models from previous coastal studies (Chu 
and Bilal, 2019; He et al., 2018; Jung et al., 2018; Wu et al., 2018; Xiao 
et al., 2017; Yang et al., 2019). Ma et al. (2019) develop a 2-stage 
statistical model to estimate PM2.5 concentrations in China from 2004 
to 2017. They reported that the PAPC of Fujian in 2010 and 2015 were 
34.48 μg/m3 and 29.22 μg/m3 respectively, in excellent agreement with 
our predictions of 34.48 μg/m3 and 29.10 μg/m3. The APC trend in 
Taiwan from 2006 to 2013 predicted by our model is also consistent 
with that predicted by Wu et al. (2018). Moreover, according to The 
Working Paper of RSPRC (Zhou et al., 2018b), the annual PM2.5 con-
centration in Taiwan decreased by 17% from 20 μg/m3 in 2012 to 
15 μg/m3 in 2017, which is also close to our predicted rate (17.5%). 

Nevertheless, compared to the study of Ma et al. (2016) and Wu et al. 
(2018), we applied an advanced machine learning model with more 
ground PM2.5 measurements and more important variables such as full- 
coverage gap-filled AOD. In addition, our model reveals that year is the 
most significant predictor since the emissions of PM2.5 and its pre-
cursors changed over time under various control policies. The accurate 
long-term predictions provided by previous studies (Jung et al., 2018; 
Ma et al., 2019) at spatial resolution of 10 km or 0.1 degree are not able 
to accurately evaluate control policies at both fine spatial and temporal 
resolution. Therefore, our long-term, high resolution model could be a 
valuable tool for policy assessment. 

4.2. Comparison of the control policies in Fujian and Taiwan 

Ma et al. (2019) reported consistency in long-term trends between 
satellite-derived PM2.5 concentrations and the implementation of var-
ious air pollution control measures in Mainland China (Huang et al., 
2018; Xue et al., 2019). Instead of evaluating existing policies though 
simulated PM2.5 concentration under different policy scenarios, our 
policy evaluation model has taken advantage of well-calibrated sa-
tellite-derived PM2.5 concentrations to assess the overall effects of 
various air pollution control policies during their implementation per-
iods. Change rate indicators of air pollution concentration, which have 
been used in previous studies to represent the effectiveness of control 
policies (Cai et al., 2018; Cheng et al., 2019), were also applied in the 
evaluation. Since the total change rate of APC and PAPC in Taiwan is 
greater, the overall air pollution control policies in Taiwan seem to be 
more effective to lower PM2.5 concentration than those in Fujian. 
Nevertheless, the control policies of Fujian in recent years such as the 
APPC-AP, FJAPPC-AP, 3YAP-BS and FJ3YAP-BS have also resulted in 
significant declines of PM2.5 concentrations. Compared to previous 
policies, they have mainly focused on enhancing energy-saving and 
emission-reduction approaches, consistent with the other parts of 
Mainland China (Gao et al., 2019). For example, the 3YAP-BS in-
tensified the optimization and adjustment of industrial and energy 
systems to promote low-emission development in Mainland China. 
Aside from controls for industries with high energy consumption and 
high pollution, elimination of backward production capacity and coal 
consumption control, 3YAP-BS has emphasized developing green in-
dustries and set goals for the proportion of low-carbon and efficient 
energy consumption (15%). 

At present, the CAAP have proved to be the most effective con-
trols in Taiwan by our policy evaluation model. Apart from enhancing 
energy-saving and emissions-reduction approaches, it also put major 
focus on the legal system, economic incentives, and public participa-
tion. The economic incentives considered were for stationary pollution 
sources, the travel industry, and an air pollution prevention fee rate – 
these were implemented with the support of Taiwan's Air Pollution 
Control Act. With regards to public participation, measures concerning 
messaging on agriculture, transportation and culture can also be found 
in the clean air plans. 

The current approach in Fujian has had immediate effects on the 
reduction of PM2.5 concentrations, but it does not solve the long-term 
issue of weak local policy monitoring, evaluation and enforcement. The 
main reason may be the misalignment of incentives as highly specific 
and costly local actions are needed in these polices, but funds are 
centrally allocated (Wong and Karplus, 2017). Additionally, such 
command and control approaches as mandatory output reduction ought 
not to be implemented for a long time as the high economy-wide cost of 
industrial structural adjustment can be harmful to corporate emission 
reduction initiatives (Li et al., 2019). Based on the responses in Taiwan, 
early introduction of market-based approaches could be beneficial be-
cause they can be an excellent tool to steer the industry towards sus-
tainability (Li et al., 2019). In the future, Fujian's policies would need to 
ensure incentive compatibility at the local levels through a reworking of 
political, fiscal and organizational mechanisms that support 
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implementation (Wong and Karplus, 2017). Moreover, according to  
Wang et al. (2019), while the present willingness to pay for air pollu-
tion treatment is weak in Mainland China, it could be higher if more 
satisfactory public participation measures were enacted and practiced. 
While treatment measures are needed, Tong et al. (2019) reported that 
even the most advanced end-of-pipe technologies have limited effects 
on PM2.5 control, and that stringent energy and industrial structure 
adjustment could benefit both air quality improvement and economic 
development. On the other hand, Taiwan may need to consider more 
policies for improving its low-carbon and efficient energy consumption 
as well as industrial structure adjustment. To minimize the economic 
and social costs of control policies, joint regional control coordination 
mechanisms is essential. The TSR could work together to conduct re-
search on industrial structure adjustment and using new low-carbon 
and efficient energy to accelerate the elimination of backward pro-
duction capacity and reduce coal consumption (Gao et al., 2019). It 
should be noted that in addition to environmental policies, changing 
weather patterns and other economic policies could also affect the 
patterns of PM2.5. We included various meteorological predictors in our 
model to separate the contributions of meteorological factors to the 
interannual variabilities of PM2.5 levels. Although many of the air 
pollution control policies involved industrial and economic re-
structuring, it is difficult to separate the impact of other economic 
policies being enforced in conjunction with the environmental policies, 
which is a limitation of our study. 

4.3. Spatial heterogeneity of effectiveness for control policies in Taiwan 

Ambient PM2.5 pollution can have a significant negative impact on 
the overall growth and yield of crops including wheat and corn (Rai, 
2016; Zhou et al., 2018). Although plants may possess some stress- 
tolerant mechanisms, a considerable amount of damage can happen to 
them as a result of PM or dust deposition leading to inhibition of 
photosynthetic activities and protein synthesis as well as increased 
susceptibility to injuries caused by microorganisms and insects. 
Therefore, controlling PM2.5 over agricultural regions is important. 
However, despite the downward trend from 2005 to 2018 there was 
uneven effectiveness depending on land-use type, especially for Taiwan. 
Even though Taiwan and Fujian both implemented pollution control 
acts such as agricultural waste smoke emission control, the effect of 
control policies in Fujian is shown to be more evenly distributed than 
that of Taiwan. Much of this discrepancy may be attributed to the 
difference in the enforcement of control policies and topography re-
garding the two regions. To limit the damage of air pollution on agri-
culture and ecosystems, especially for the farmland and forest which 
are close to the industrial area, effective long-term strategies for con-
trolling PM2.5 in Taiwan must be developed. For example, it has been 
suggested that policy and financial incentives to enterprises producing 
serious pollution in areas with large tracts of arable land should be 
applied to minimize contamination of the atmosphere (Zhou et al., 
2018a). 

4.4. Influential factors of PM2.5 changes in the TSR 

The spatial distribution of PM2.5 we found in the TSR is very similar 
to that found by previous studies (He et al., 2018; Wu et al., 2018). 
Northern Fujian is characterized by more hills, extensive vegetation 
coverage, and few human activities, resulting in lower PM2.5 levels. In 
contrast, as reported by Xu et al. (2013) and Wu et al. (2019), the high 
PM2.5 pollution in southern coastal cities has been caused by the in-
teractions among coal combustion, pyrometallurgical processes, traffic 
emissions, sea salt, and crustal sources. 

The eastern regions with low PM2.5 level in Taiwan mostly consist of 
mountains running from the northern to southern tip. The major urban 
areas in Taiwan are in the western regions with flat to gently rolling 
plains. Most heavy-metal industrial parks are located in the 

southcentral part of the island, giving rise to ambient PM2.5 levels. 
Previous studies indicated that the major sources of PM2.5 in Taiwan are 
industrial emissions and long-range transport of pollutants from 
Chinese mainland (Chen et al., 2014; Wang et al., 2016; Wu et al., 
2018). The transported haze events from Chinese mainland over 
Northern Taiwan in winter have been extensively studied, but the long- 
term effects remained unclear due to the lack of long-term monthly 
average PM2.5 measurements for both Taiwan and Chinese mainland. 

In this study, monthly average PM2.5 concentration of Northern 
China, Northeastern China and the YRD produced by Xiao et al. (2018) 
and Ma et al. (2016) as well as the PM2.5 concentrations in Taiwan from 
September to May of 2005 to 2017 (a period dominated by north-
easterly winds), were used to evaluate the long-term transport from 
China's polluted areas to Taiwan (Chuang et al., 2018). The correlation 
coefficients between the monthly average PM2.5 concentration of three 
highly polluted areas in China and Taiwan are 0.17, 0.27 and 0.25, 
respectively, indicating that the correlation is low. Consistency of 
trends in yearly PM2.5 concentrations between the high polluted regions 
of Mainland China and Taiwan was also not found in this study. Some 
previous studies reported that the majority of PM2.5 in Taiwan can be 
attributed to local emissions from traffic and industrial activities (Chen 
et al., 2001; Gugamsetty et al., 2012; Hsu et al., 2016; Lu et al., 2016; 
Tseng, 2016), while others suggested that changes in daily PM2.5 levels 
in Taiwan may be due to long-range transport from the aforementioned 
regions. The impact of long-range transport at the monthly and longer 
time scales needs to be further investigated. 

5. Conclusion 

In this study, we developed a RF model with gap-filled satellite AOD 
and other predictors to estimate high-resolution ground-level PM2.5 

concentration in the TSR from 2005 to 2018. Based on its predictions, 
the effectiveness of air pollution control measures and actions in TSR 
was evaluated quantitatively. By analytically comparing the policies 
implemented in TSR, we concluded that Fujian's policies could take 
more advantages of market-based approaches and public participation 
measures, while Taiwan's policies can focus more on improving its low- 
carbon and efficient energy consumption. Furthermore, since Taiwan's 
control policies exhibited obvious spatial heterogeneity of effectiveness, 
all land-use types should be taken into consideration for new policies 
given the potential harm of PM2.5 to agricultural production, food se-
curity and ecosystems. The disagreement between monthly PM2.5 con-
centration patterns in the highly polluted regions of Mainland China 
and Taiwan suggests that the transport mechanism at monthly and 
longer time scales needs to be further studied. Finally, several policies 
are still under implementation as of our current study, which warrants 
future analysis on their overall impact on regional air quality. 

One limitation of this study is that since the specific emission data 
for TSR can't be obtained yet, more accurate regional concentration 
data can not be predicted. Since the actual starting and ending times 
and specific reaction periods of these control policies are not recorded 
in the policy documents or any studies, the lag effect of policies is hard 
to be controlled in the policy evaluation model. As Taiwan has more 
ground measurements and more evenly distributed monitoring sites, 
the accuracy of predicted PM2.5 in Taiwan is expected to be higher than 
Fujian. This implies that the accuracy of policy efficacy evaluation is 
also higher in Taiwan, which is another limitation of our study. In 
addition, several policies are still under implementation and we can 
only analyze their effectiveness of their current implementation period. 
Future study will focus on fully evaluating those policies based on a 
longer period of regional PM2.5 concentration estimates. 
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