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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Co-optimising rooftop farming options 
with industrial multi-energy system 
design. 

• Model-based approach combining en-
ergy system model with first principle 
model. 

• Develop rooftop farming database with 
7 vegetables and 10 cultivation 
conditions. 

• Lettuce and tomato denote the cost and 
emission optimal options respectively. 

• Rooftop farming brings more environ-
mental benefit than economic benefit.  
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A B S T R A C T   

Process industry remains one of the difficult-to-decarbonise sectors globally. To mitigate industrial greenhouse 
gas (GHGs) emissions, an eco-industrial energy systems (e-IES) optimisation framework is proposed by coupling 
mathematical optimisation with clustering algorithms and first principle modelling. Within the framework, a 
rooftop farming database was developed using biogeochemical simulations, which models seven crop growth in 
response to 10 cultivation conditions. Clustering algorithm was applied to analyse energy system data, along 
with the rooftop farming database, to inform the optimisation model. A Mixed Integer Linear Programming 
optimisation model was developed to optimize system design considering the trade-off between economic and 
environmental objectives. The implications of rooftop design on e-IES and their interactive effects on industrial 
decarbonisation were addressed. A case study at an industrial park in Suzhou China reveals that rooftop farming 
could generate mutual benefits from both cost and GHG reduction perspectives. Planting lettuce indicates a cost- 
efficient solution, and planting tomato could contribute the most to GHG emission reduction. Compared to the 
rooftop PV and the spare rooftop, 2.4% and 5.6% cost savings, as well as 10.2% and 16.3% emission savings, 
could be achieved respectively by implementing rooftop farming. Overall, this study demonstrates an emerging 
perspective on decarbonising the industrial sector by coupling biogeochemical simulation and energy system 
optimisation and adopting cross-disciplinary approaches.  
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1. Introduction 

The global decarbonisation agenda requires a significant reduction 
in greenhouse gas emissions (GHG) by 2050 comparing with 1990 
levels. Process industry remains one of the difficult-to-decarbonise sec-
tors accounting for roughly 1/4 of global GHG emissions in 2019 [1], 
which mainly arise through direct emissions from combustion in 
manufacturing processes and refining of petroleum products and fossil 
fuels [2]. At regional or national levels, carbon reduction targets and 
regulations have been introduced to mitigate climate change. EU 
committed to decrease 40% the industrial GHG emissions for the in-
dustry by 2030 compared to 1990 levels [3]. The Chinese government is 
very likely to accomplish its announced plans to reduce industrial CO2 
emission intensity by 22% from 2015 to 2020 [4]. 

There has been an increasing interest in how to cost-effectively 
decarbonise industrial processes. The multi-energy systems that syner-
gistically integrates multiple types of energy, including fuel, steam, 
electricity, heating, and cooling, has been considered as a promising 
solution to mitigate industrial GHG emissions. Relevant research on 
decarbonisation by multi-energy systems, especially in the difficult-to- 
decarbonise process industry, has been reviewed as follows. 

1.1. Relevant research 

Recently published research has covered a wide range of multi- 
energy system optimisation [5], including the system optimisation 
with uncertainties [6]; sizing and operating co-optimisation [7]; quan-
tifying the flexibility and contribution for local renewable consumption 
[8]; and robust system design under extreme events [9]. 

In particular, Process Systems Engineering research communities 
have contributed to mathematical optimisation development and ap-
plications in industrial multi-energy systems. Martin et al. [10] estab-
lished a mixed-integer nonlinear programming optimisation model to 

design a self-sufficient algae biodiesel production system by integrating 
solar and wind energy. Wu et al. [11] developed a life cycle optimisation 
model considering economic and environmental objectives. Lee et al. 
[12] investigated the positive interaction between polygeneration and 
geothermal energy utilisation and highlighted the vital roles of the 
multi-scale modelling framework to achieve a sustainable industrial 
energy solution. Xu et al. [13] proposed an optimisation model to 
optimise energy supply and demand strategies of an industrial park, 
where climate uncertainties and energy systems efficiency and stability 
have been considered. Shen et al. [14] coupled performing exergy 
analysis and multi-objective optimisation to model a separation process 
in ethylene manufacturing and address the trade-off between exergy 
efficiency and operational cost. Noorollahi et al. [15] investigated the 
introduction of electric vehicles as the energy storage for optimal design 
of energy systems in an industrial zone. Wu et al. [16] proposed a 
biomass polygeneration integrated energy system optimisation model 
and investigated the feasibility to various case regions, where the vital 
factor of the split ratios was further evaluated. 

To harness data advances in sectoral-specific energy systems e.g. 
real-time energy demand and supply profiles, data-driven modelling 
approaches have been developed to couple machine learning techniques 
and mathematical optimisation [17]. Clustering algorithms in the in-
dustrial context have been summarised by Benabdellah et al. [18]. In 
their research, five categories of clustering techniques have been 
grouped: the partitioning-based, e.g. K-mean and hierarchical-based, 
algorithms have been used in temporal clustering in previous pub-
lished research; whereas grid-based and density-based algorithms, e.g. 
OPTICS, have been widely applied in spatial clustering problems. 
Research efforts have also been placed on developing clustering algo-
rithms to decompose spatial complexity to enable large-scale energy 
system optimisation models [19]. Voulis et al. [20] proposed a spa-
tial–temporal informed clustering method to analyses electricity de-
mand at different urban scales. Previous research also compared 
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conventionally partitioning and hierarchical clustering algorithms with 
shape-based clustering algorithms, (e.g. k-shape and dynamic time 
warping barycenter averaging) in time-series decomposition e.g. to 
identify the representative period for energy systems optimisation [21]. 
Yilmaz et al. [22] proposed a k-means based method and combined with 
five features to determine the temporal representative domestic elec-
trical demand profiles. In addition, Shen et al. [23] developed deter-
minist and robust optimisation models for large-scale industrial energy 
systems, where a data-driven approach underpinned by kernel support 
vector clustering was proposed to consider uncertainty parameters. 
Wang et al. [24] introduced a X-means clustering approach in energy 
system optimisation field, which is combined K-means with the Bayesian 
Information Criterion to evaluate surviving clusters, and further com-
bined with a stochastic optimisation model. As highlighted in the recent 
review by Rajabi et al. [25], the development of efficient methods for 
clustering real-time and short-term data represents a future research 
direction. 

1.2. Knowledge gap and contribution 

Despite that the previous energy systems modelling advances 
addressed multi-energy solutions under industrial settings considering 
energy-only components, e.g., wind turbine, solar PV panels, and solar 
thermal collectors, modelling gap emerges on the novel solutions by 
introducing eco-design components, i.e., rooftop agriculture, to enable 
cost-effective decarbonisation. Synergistic integration of eco-design of 
rooftop farming with energy supply–demand strategy could potentially 
offer a promising decarbonisation solution to the process industry. 

To fill this gap, this exploratory study, for the first time, models an 
eco-industrial energy system (e-IES), which is underpinned by consid-
ering multi-energy and rooftop farming simultaneously. We present a 
model-based design optimisation platform by coupling mathematical 
optimisation with clustering algorithms and first principle modelling to 
address open research questions on implications of rooftop design on e- 
IES and their interactive effects on decarbonisation. Through an e-IES 
case study, we demonstrate the new insights such an integrated model- 
based approach could generate to inform industrial park designer and 
policy-makers’ decision-making. 

The contributions of the present study are:  

(1) The modelling scope is extended beyond multi-energy solutions 
that leads to highly cross-disciplinary research and has the po-
tential to unlock the difficult-to-decarbonate industrial chal-
lenges cost-effectively. Synergistic optimisation of rooftop 
agriculture and industrial energy systems converges low-carbon 
and multi-sector co-development towards an eco-industry future.  

(2) A new model-based framework has been proposed that integrates 
the mathematical optimisation and first principle modelling to 
optimise the whole system performances and generate new evi-
dence on the co-benefits and interaction between rooftop farming 
and industrial energy system. 

This paper is organised as follows. The modelling methods are 
described in Section 2. A case study is introduced in Section 3. Section 4 
focuses on discussing results, limitations and future research directions, 
which is followed by a conclusion in Section 5. 

2. Method 

As demonstrated in Fig. 1, the e-IES concept integrates rooftop 
farming with energy system design under the industrial park context. 
Implementing rooftop farming offers a potential solution to zero food 
miles, GHG reduction by photosynthetic assimilation of CO2, and ther-
mal demand reduction by enhancing building rooftop insulations. Fig. 1 
shows the proposed model-based e-IES design optimisation framework 
including three major components. A rooftop farming database was 

constructed in the first component by first-principle underpinned 
simulation using DeNitrification-DeComposition (DNDC) [26], which 
models daily incremental growth and agro-ecosystem carbon nitrogen 
cycles in response to varying cultivation conditions. In the second 
component, unsupervised learning clustering methods were adopted to 
analyse the energy system data. The model-based e-IES design optimi-
sation forms the basis of the third component to optimise the cost- 
effective decarbonisation strategies for industrial park energy systems 
considering dataflows from the previous two components. 

Specifically, the model-based e-IES design optimisation framework 
addresses conflicting e-IES design criteria from economic and decar-
bonisation perspectives. By solving the optimisation model, the rooftop 
utilisation options, the e-IES systematic configurations, the energy (i.e. 
cooling and heating) network connections, as well as the e-IES opera-
tional strategies, can be optimised holistically and simultaneously. 

2.1. Rooftop farming database by biogeochemical simulation 

The rooftop farming database was developed by adopting the DNDC 
model presented in our previous research [27]. In contrast to data- 
driven empirical models, DNDC is underpinned by first-principle 
modelling and simulates biogeochemical processes. DNDC is one of 
the most widely adopted biogeochemistry models first proposed by Li 
et al. [26] and has been validated worldwide including projection of 
vegetable growth in different regions and environments, e.g., in China 
[28] and in Ghana [29]. DNDC has experienced over two-decade 
development a DNDC family tree is presented by the comprehensive 
review by Gilhespy et al. [30]. A complete suite of biogeochemical 
processes (e.g., plant growth, organic matter decomposition, fermenta-
tion, ammonia volatilisation, nitrification, denitrification) is embedded 
in the DNDC model, enabling computation of carbon and nitrogen 
transport and transformations in plant-soil ecosystems. DNDC consists of 
two components. The first component, consisting of the soil climate, 
crop growth, and decomposition sub-models, transforms primary drivers 
(e.g., climate, soil properties, vegetation, and anthropogenic activity) to 
soil environmental drivers (e.g., temperature, moisture, pH, redox po-
tential, and substrate concentration gradients). The second component, 
including the nitrification, denitrification, and fermentation sub- 
models, simulates C and N transformations mediated by the soil mi-
crobes [31]. 

As illustrated by Fig. 1, DNDC was informed by integrating whole- 
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year daily climate data to simulate the daily incremental growth of the 
living plants on rooftop under different conditions where not only nat-
ural conditions but also the enhanced photosynthetic assimilation of 
CO2 in response to elevated CO2 concentration under greenhouse were 
modeled [32]. This study simulates seven vegetable crops (i.e., tomato, 
lettuce, celery, broccoli, radish, cabbage, and potato) cultivated under 
open farm and conditioned greenhouse. Nine different greenhouse 
conditions were simulated by configuring temperature levels (i.e., 20 ℃, 
23 ℃, and 26 ℃) and carbon dioxide concentrations (i.e., 350 ppm, 450 
ppm, and 550 ppm). Thus, ten rooftop crop cultivation conditions (1 
open farm and 9 conditioned greenhouse) form a comprehensive data-
base consisting of 70 datasets as visualised in Fig. 2. The climate data 
including daily temperature and precipitation are derived from the 
average of 3-year daily meteorological data, which can be obtained from 
the meteorological data sharing service system [33] and given in Ap-
pendix Fig. A1. 

2.2. Schematic of an eco-industrial energy system 

A multi-energy system was considered that fulfills electricity, cool-
ing, and heating demand of an industrial park, as illustrated in Fig. 3. 

Each site was modelled to build its own multi-energy system and energy 
network connections among sits were also enabled. By further enabling 
rooftop farming, an e-IES design optimisation model was developed to 
optimise the rooftop utilisation options, e-IES systematic configurations, 
energy (i.e., cooling and heating) network connections, and the e-IES 
operational strategies simultaneously. 

In the e-IES model, the whole year has been divided into three 
representative seasons, i.e., summer, winter, and transition season [34]. 
Summer associates with significant amount of cooling demand and less 
heating demand (for hot water supply); winter associates with signifi-
cant amount of heating demand and less cooling demand (for condi-
tioned workshops); transition season (spring and fall) associates with 
both less cooling and heating demand as no general space cooling and 
heating requirement. Each representative season was assigned with 
different number of days. A typical daily demand profile for each season 
was generated with an hourly temporal resolution, which enables 
optimisation model to capture the demand fluctuation. The entire model 
was formulated as a Mixed Integer Linear Programming (MILP) opti-
misation problem based on previous work [35,36]. 

2.3. Modelling framework and objective functions 

In the e-IES design optimisation model, two conflicting objectives 
have been considered, i.e., minimised the total annualised cost (TAC) 
over 20-year horizon, and minimised the annualised CO2-equavalent 
emissions (ACE) of the e-IES. The epsilon-constraints based multi- 
objective optimisation method has been applied in this study to 
address the trade-off between two conflicting objectives for e-IES design 
[37]. 

The two objectives, a range of energy system constraints, and logical 
constraints for rooftop option choices have been outlined below. More 
detailed constraint formulations can be found in Appendix A1 and the 
model parameterisation is given in Appendix A2.  

Min obj1 = total annualised cost (TAC) by Eqs. (1) ~ (8) 

Min obj2 = annualised CO2-equavalent emissions (ACE) by Eq. (9) 
S.T. Energy balances 
Rooftop options constraints 
Conversion constraints 
Capacity expansion constraints 
Operation constraints 
Cooling storage constraints 
Battery storage constraints 
Grid connection constraints 
Energy network constraints  

The total annualised cost (TAC) objective function is defined in Eq. 1. In 
addition to energy technologies, our research also considers the capital 
and O&M cost as well as the yield income of an e-IES. 

TAC = CAPEX+FC+MC+GC+YI (1) 
where CAPEX represents the capital cost for both energy technolo-

gies and rooftop farming settings, FC denotes the fuel cost, MC is the 
maintenance cost, GC is the grid cost, and YI is the farming yield income. 

The CAPEX accounts for the investment on energy devices, energy 
networks, and construction of different rooftop farming settings, see Eq. 
(2). The CAPEX is further annualised by multiplying a capital recovery 
factor (CRF) assuming the interest rate of 5%, see Eq. (3). The service life 
of energy devices and rooftop farming settings is assumed as 20 and 15 
years, respectively, and energy network is assumed with 30 years’ ser-
vice life. Eq. (4) constrains the number of crop and cultivation condition 
selected for each rooftop agricultural cultivation site. 

CAPEX =
∑

i
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t
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t × CRFt +
∑

i

∑
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∑
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Fig. 3. Outline of the e-IES design optimisation model. a, availability of 
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(2) 
CRF =

r×(1+r)n

(1+r)n
− 1 (3) 

∑7
v=1
∑10

k=1φRF
i,v,k⩽1 (4) 

where i, j, t denotes site number (i and j), and energy technologies (t), 
respectively; k = 1 ~ 10 denotes 10 rooftop cultivation conditions; v = 1 
~ 7 represents 7 crop options. CAP indicates the installed capacity of 
energy devices. DX represents the distance between sites. φ is a binary 
variable controlling the selection of one certain crop and one cultivation 
condition on the rooftop of one site. 

Fuel cost (FC) is defined by the gas consumption cost by the Boiler 
and the CHP (Eq. (5)). 

FC =
∑

i
∑

s
∑

h

[(
ECHP

i,s,h
ηCHP × CCHP-NG

h +
QB

i,s,h
ηB

)

× CB-NG
h

]

(5) 

where i s, h denotes the sites, seasons, and hours, respectively. ECHP is 
the electricity generated by CHP, QB indicates the heating generated by 
boiler, η is the efficiency, and CCHP-NG and CB-NG are the unit cost of 
natural gas, which could be different depending on local policies. 

As given in Eq. (6), maintenance costs (MC) includes annual MC for 
rooftop farming options and MC for energy devices, which is determined 
by the product of energy output from each device and the corresponding 
unitary maintenance cost (Cmaint). 

MC=
∑

i
∑

s
∑

h(ECHP
i,s,h +QHP/B-heat

i,s,h +QE-CH/A-CH
i,s,h +Qst

i,s,h +Est
i,s,h)×Cmaint

t 

+
∑

i
∑

v
∑

kCRF
i,v,k (6) 

where ECHP is electricity generated by CHP; QE-CH/A-CH is cooling 
energy generated by electric chiller or absorption chiller; Est and Qst are 
cooling and electricity been stored, respectively; and CRF is the annual 
maintenance cost of each rooftop farming option. 

As defined in Eq. (7), grid cost (GC) depends on the purchased 
electricity cost and the revenue generated by the selling surplus onsite 
electricity back to the grid. 

GC = Cim
h ×

∑
i
∑

s
∑

hEim
i,s,h − Cex

h ×
∑

i
∑

s
∑

hEex
i,s,h (7) 

where Cim and Cex are the tariff for buying and selling electricity back 
to grid, respectively. Eim and Eex represent the amount of electricity 
purchased and sold. 

Yield income (YI) is calculated by the income of selling yields from 
the rooftop farming (Eq. (8)). 

YI =
∑

i

∑

v

∑

k
φRF

i,v,k × salesi,v,k (8a)

salesi,v,k = CRF
v × Ai × yieldv,k (8b)

where φ is a binary variable for the selection of crop (v) and culti-
vation condition (k), salesi,v,k represents the annual income per site for 

different rooftop farming options, CRF is the unit price of each crop, Ai is 
the available rooftop area of each site, and yieldv,k is the simulated yield 
of each crop under different cultivation conditions. 

The annualised carbon emissions (ACE) objective function not only 
accounts for the carbon profiles of energy technologies but also capture 
the carbon nitrogen cycles and reflect the net carbon emissions from 
rooftop farming system, Eq. (9a) ~(9d). 

ACE = NGE+GEE+RFE (9a) 

NGE = ψNG ×
∑

i
∑

s

(
ECHP

i,s,h
ηCHP +

QB
i,s,h
ηB

)

(9b) 

GEE = ψgrid ×
∑

i
∑

s
∑

hEim
i,s,h (9c) 

RFE =
∑

i
∑

v
∑

kψRF
v,k × Ai × φRF

i,v,k (9d) 
where NGE, GEE, and RFE are the natural gas emissions, grid elec-

tricity emissions, and rooftop farming emissions; ΨNG, Ψgrid and ΨRF are 
the GHG emission factor for natural gas, utility grid, and different 
rooftop farming options, respectively, where negative emissions could 
be induced by rooftop farming options due to the carbon sequestration; 
ECHP and QB are the electricity generated by CHP and heating generated 
by boiler, respectively; η defines the efficiency; Eim is the amount of 
purchased electricity; Ai represents the available rooftop area of each 
site; and φ is a binary variable ensuring on more than one crop and 
cultivation system is selected for each site. The GHGs of rooftop agri-
culture represents the land use GHGs. It accounts for the carbon cycles in 
agro-ecosystem including the crop photosynthesis-fixed carbon, plant 
respiration (root, shoot and leaf) and microbial heterotrophic respira-
tion to convert soil organic carbon to GHGs. However, the operational 
and capital GHGs embedded in fertiliser, energy and greenhouse mate-
rials, as well as downstream GHGs at crop consumption and disposal 
phases were not accounted for. The GHGs of energy systems focuses on 
operational emissions without considering the GHGs embedded in 
capital inputs e.g. PV panel material, boilers, chillers material inputs, 
pipeline building materials. 

2.4. Clustering technique 

To enable the optimisation model computationally intractable, the 
widely applicable clustering technique, i.e. k-medoids clustering 
method [38], was adopted to cluster representative demand profiles [6] 
in accordance with the model’s temporal settings. 

2.5. Computational method 

The epsilon-constraints based multi-objective optimisation method 
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has been applied to address the system design trade-offs between the 
cost minimum and GHG minimum objectives [36]. The mathematical 
MILP optimisation model in this study is formulated in GAMS [39] and is 
resolved using CPLEX 28.2 solver on an Intel(R) Core(TM) i7-8565U 
CPU @1.8 GHz with 8 GB of memory. The CPLEX solver is widely 
adopted to solve MILP problems and its robustness and efficiency have 
been demonstrated in previous research [40]. The e-IES optimisation 
model with 2.8 × 105 variables (1.4 × 105 are binary) was resolved in 
approximately 45 min CPU time at an optimality gap of 2%. 

3. Case study setups with clustered demand data 

An industrial park located in Suzhou city with six different sites (see 
Fig. 4a) has been used as an optimisation case study. Suzhou is a major 
city located in the Yangtze River Delta, China, characterised with hot 
summer and cold winter. In the industrial park, all buildings offer suf-
ficient structural strength to develop rooftop farming. Several buildings 
while located within one factory border are considered as one site. Each 
site has different rooftop available areas (see Fig. 4b), and the demand 
patterns for each site are different so that energy networking availabil-
ities may potentially save energy bills due to the demand complemen-
tarity over the same time horizon. 

The typical hourly energy (cooling, heating, and electricity) demand 
profiles for six sites are obtained by clustering the 2-year (2016 and 
2017) historical measurement data and presented in Fig. 5. When 

rooftop farming is applied, the heat transfer coefficient of building 
rooftops and local micro-climate will change [41]; open farm and 
greenhouse are expected to affect building thermal demands to different 
extents. Based on the method in Ref. [42], the cooling and heating de-
mand profiles are estimated to scale down 4% and 6% by implementing 
open farm and greenhouse on rooftops, respectively. 

In addition, the parameters corresponding to each simulated crop in 
this study are listed in Table 1. The maximum biomass yield, the biomass 
fraction and the carbon to nitrogen ratios are key inputs associated with 
the simulated biomass for grain, leaf, stem, and root of a crop. The 
thermal degree day refers to cumulative air temperature from seeding 
until maturity of a crop. The tillage and fertilising methods vary with 
different crops [43]. 

4. Results and discussion 

4.1. Rooftop farming yields and emissions 

The rooftop farming database records the DNDC simulated data 
(crop yield and emissions) and economic data (cost and income). The 
cost data accounted for the capital costs and the operational costs for 
fertilisation (energy, agro-chemical, and labor cost), irrigation and other 
field management costs. Detailed cost data for different crops are pre-
sented in Appendix Tables A5-A11. The income is calculated by the yield 
and the retail market price been presented in Table A12 in Appendix. 

Fig. 5. Typical energy demand profiles (cooling in summer, heating in winter, electricity in transition seasons) for six sites. a, the garment factory (site 1); 
b, the commercial complex (site 2); c, the hotel (site 3); d, the pharmaceutical factory (site 4); e, the electronic factory (site 5); f, the office (site 6). 

Table 1 
Physiological parameters of all simulated crops.  

Settings Maximum biomass yield (kg/C/ 
ha/yr) 

Biomass fraction 
(seed) 

C/N ratio 
(seed) 

Annual N demand (kg N/ 
ha/yr) 

Thermal degree days 
(TDD) 

Water demand (kg water/kg dry 
matter) 

lettuce 914 0.64 11.5 100 1,400 800 
broccoli 600 0.3 10 141 1,800 600 
tomato 2010 0.36 26 197 1,400 900 
cabbage 28 0.01 15 130 2,500 600 
potato 2000 0.7 60 48 2,100 500 
radish 1000 0.75 19 60 1,000 508 
celery 40 0.01 12 289 1,300 500  
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Table 2 displays the annual crop yields based on DNDC simulated daily 
incremental growth. Among the 7 simulated crops, lettuce, tomato, and 
celery demonstrated the highest yields across a range of cultivation 
conditions. Table 3 summarises the simulated net ecosystem exchange 
(NEE) of carbon. NEE is equivalent to the difference between total 
amount of photosynthesis-fixed carbon and ecosystem respiration (i.e. 
biotic conversion of organic carbon to carbon dioxide by all organisms in 
the rooftop ecosystem accounting for plant respiration (root, shoot and 
leaf) and microbial heterotrophic respiration). Thus, NEE represents the 
net CO2 emissions from biogeochemical carbon cycles in rooftop agri-
cultural systems. A crop cultivation with a negative NEE value indicates 
net carbon sink effects therefore offers decarbonisation benefits. 

As shown in Table 3, tomato delivered negative NEE across different 
cultivation options, where the NEE for other crops vary significantly 
with the options between open farm and conditioned greenhouse. NEE is 
not only regulated by plant physiological traits, photosynthesis path-
ways (e.g. Calvin-Benson-Bassham or C3, Hatch-Slack or C4 cycles), but 

also affected by environmental variables (e.g. temperature, CO2 level). 
Such trends can be observed from Table 3, NEE fluctuate with the 
temperature and elevated CO2 concentration in greenhouse cultivation 
conditions. However, DNDC simulations including biogeochemical 
carbon and nitrogen cycles represent theoretical results derived from 
computational experiments; however, to further validate the applica-
bility of such simulation model and advance the understanding of C and 
N cycling in rooftop agro-ecosystems, comparisons of DNDC simulation 
with measurement obtained from experiment field would be needed in 
future research. 

4.2. Optimal rooftop options and corresponding e-IES design 

By solving the e-IES optimisation model, optimal rooftop design 
strategies can be achieved. The pareto frontier presented in Fig. 6a 
shows a set of non-dominated optimal solutions to address the design 
trade-offs between cost and GHG emission reduction objectives. The 
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Fig. 6. Optimal design for e-IES considering trade-offs between cost and emission objectives and corresponding rooftop options and energy network 
design. a, Pareto frontier showing design trade-offs; b, rooftop options and energy flow for the least TAC solution; c ~ j, rooftop options and energy flow for the 
other solutions; k, rooftop options and energy flow for the least emission solution. 

Table 2 
Simulated annual yield for 7 crops under different cultivation conditions.  

Yield (kg/ha) OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7 OPT8 OPT9 OPT10 

lettuce 117,288 224,585 249,563 254,125 240,875 252,387 253,907 243,482 250,649 255,428 
broccoli 14,299 15,790 17,549 18,966 18,437 20,469 22,138 19,625 21,802 23,561 
tomato 109,419 116,186 122,570 123,847 124,741 130,550 132,146 126,017 130,103 132,210 
cabbage 24,309 79,410 88,223 95,338 94,098 104,518 112,964 101,856 113,147 114,524 
potato 5,892 8,918 9,913 10,708 9,852 10,950 11,830 10,040 11,157 12,054 
radish 62,805 83,085 99,800 102,396 76,907 85,452 99,755 66,232 73,598 79,520 
celery 130,591 172,462 191,610 206,928 184,461 205,014 199,907 186,091 197,884 197,354  

Table 3 
Simulated annual NEE for 7 crops under different cultivation conditions.  

NEE (kg/ha) OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7 OPT8 OPT9 OPT10 

lettuce − 1,666 1,404 1,000 990 1,001 810 785 955 828 759 
broccoli − 753 6,227 5,246 4,588 6,096 5,138 42,92 6,196 5,184 4,439 
tomato − 7,291 − 8,746 − 9,046 − 9,405 − 4,910 − 4,872 − 4,992 − 4,560 − 4,909 − 5,085 
cabbage 15 − 2,872 − 838 − 1,638 − 1,219 − 2,032 − 1,800 − 1,858 − 3,067 − 3,286 
potato − 4,647 10,969 9,798 8,582 10,465 9,071 8,116 10,582 9,355 8,324 
radish − 5,200 16,239 14,758 18,395 18,395 17,178 13,456 20,588 19,372 18,541 
celery − 4571 5,877 4,847 4,028 3,138 1,857 2,137 5,394 5,030 4,764  
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least TAC solution achieved the least total annualised cost (TAC) of 
2,437 × 103 US$/year with 237 × 103 ton/year GHG emissions; in 
contrast the emission-least solution delievered a low-carbon profile with 
131 × 103 ton/year annualised GHG emissions but with the higher cost 
of 3,727 × 103 US$/year. 

The least TAC solution selects to plant lettuce with open farm 
cultivation option. With the optimal solutions shifting from the least cost 
to the least emissions, the rooftop farming decisions showed a transition 
from lettuce plantation under conditioned greenhouse (i.e., 20 ℃ and 
550 ppm CO2) to open farming of tomato, and finally to tomato plan-
tation under conditioned greenhouse (i.e., 20 ℃ and 550 ppm CO2). It is 
interesting to observe that although the NEE performance in Table 3 
shows “lettuce unconditioned” (OPT1) is beneficial for carbon emissions 
than “lettuce in greenhouse” (OPT4), the OPT4 still indicates a lower 
emission solution. This is due to assumption that greenhouse could 
directly reduce more cooling and heating demand of the sites than un-
conditioned open farm as denoted in Table A4, and such direct energy 
demand reduction led by rooftop farming plays a more dominant role 
than the NEE in this situation, which also reveals that the interlink be-
tween rooftop farming and the whole system design are comprehensive 
and the proposed model is therefore of importance to quantify such an 
interlink. 

Meanwhile, a general trend in energy network decisions was 
observed, i.e. more active transfer of the heating energy among sites 
than the cooling energy. This was driven by the modelling configuration 
which enabled cooling storage for each site, so that cooling energy can 
be stored and utilised locally other than transferred to neighboring sites. 
Notably, Site 5 (i.e. the electronic processing site) has been selected to 
output heating energy to neighboring sites across the Pareto optimal 
solutions. This can be explained by the relatively low heating demand 
but high electricity requirement in Site 5 as illustrated in Fig. 5; thus, to 
meet Site 5′s electricity demand, the combined heating and power (CHP) 
technology would generate a significant amount of surplus heating, 
which can be transferred to neighboring sites. 

Fig. 7 further shows the comparison of system configurations for the 
least TAC solution in contrast to the least emission solution. The six sites’ 
system configurations are optimised simultaneously considering both 
energy network design and rooftop farming solutions (as reported in 
Fig. 6). For both solutions, no battery storage was adopted due to the 
relatively high capital costs; and the boiler capacity design was small as 
CHP could provide heating by utilising the residual heat along with 

power generation. The least TAC solution selected to install larger CHP 
capacities for each site to efficiently utilise residual heat to meet heating 
demands, whereas much lower heat pump (HP) capacity was selected. 
Meanwhile, the residual heat can be utilised by the relatively high ca-
pacity of absorption chiller (A-CHILLER) to provide cooling so that less 
capacity of electric chiller (E-CHILLER) was selected for the least TAC 
solution. Since the cooling generated by residual heat and cooling de-
mand could mismatch, larger capacity of cooling storage was needed in 
the least TAC solution. 

4.3. Comparison with rooftop photovoltaic (PV) and spare roof 

Fig. 8 shows the comparison between optimal solutions achieved 
with rooftop farming options with the set of optimal solutions derived 
from two other rooftop utilisation scenarios, i.e., rooftop PV option and 
unused rooftop. For the scenario of rooftop PV option, the capital and 
O&M costs of the rooftop PV system need to be considered, and 
renewable solar power is generated with less emissions and may save the 
fuel consumption of the energy system. The capital and O&M costs as 
well as the emissions induced by the rooftop farming options need to be 
deducted from the objective functions. As for the unused rooftop sce-
nario, all energy, cost and emission terms associated with either rooftop 
farming or PV are deducted from the objective functions. Therefore, 
when generating the set of optimal solutions for rooftop PV and unused 
rooftop scenarios, a slightly adjustment is needed for the TAC and ACE 
objective functions as presented in Eq. 1 ~ 8 and Eq. 9, respectively. 

In general, implementing rooftop farming enabled both cost savings 
and decarbonisation compared to rooftop PV and unused rooftop sce-
narios, though the rooftop PV and rooftop farming deliver similar per-
formance while achieving the least cost solution. Such observation is 
case specific, the regions with higher solar resource might result in 
rooftop PV as cost-optimal solution. Meanwhile, more saving effects 
were observed in the solution comparisons for the GHG emission 
reduction (i.e., 16% and 10.2%) than the cost benefit (5.6% and 2.4%). 
Such a trend indicated that implementing rooftop farming delivered 
higher benefits from the environmental perspective than the economic 
perspective. The Pareto optimal solutions with rooftop farming achieved 
higher savings in comparisons with the scenarios with unused rooftop (i. 
e., 5.6% for cost and 16.3% for GHG emissions) than scenarios with the 
rooftop PV (i.e., 2.4% for cost and 10.2% for GHG emissions). This 
observation provides evidence for future rooftop utilisation decision- 
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Fig. 7. Comparison of the six sites’ system configurations between the 
least TAC solution and the least emission solution. a, least TAC solution; b, 
least emission solution. Abbreviation: CHP (combined heating and power), A- 
CHILLER (absorption chiller), E-CHILLER (electric chiller), COOL-STO (cooling 
storage), ELE-STO (battery storage), HP (heat pump). 
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making: rooftop utilisation by either energy or farming systems is worth 
further investigation from both economic and environmental 
perspectives. 

4.4. Limitations and the way forward 

This study presented a biogeochemical simulation and energy system 
integrated model towards eco-industrial energy system optimisation. 

Research limitations and emerging research directions are high-
lighted below:  

(a) Rooftop agriculture GHGs induced by land use effects and agro- 
ecosystem biogeochemical processes have been captured. Such 
GHGs include the crop photosynthetic carbon sequestration 
(negative GHG emissions) and emissions released to atmosphere 
due to plant respiration as well as soil microbiome respiration. 
However, in future research, it is worth to couple full life cycle 
approach with the develop IES model to account for operational 
and capital GHGs at rooftop agriculture stage such as GHGs 
embedded in greenhouse materials or field operations.  

(b) The land-use GHGs derived from DNDC simulation represent 
theoretical values and computational experiments which would 
need further validation by comparing with field measurements. 
Another interesting direction would be to couple computational 
and field experiments to explore the possibility to use organic 
fertilisers derived from IES system e.g. organic waste from food 
industry or local sanitation systems in agriculture practice. This 
would lead to a resource-circular zero-waste IES optimisation and 
design problem.  

(c) This study presents a deterministic optimisation problem, the 
data variability and uncertainty in biogeochemical simulation 
and energy system model were not considered in current study. 
However, in future, it is worth to expand the optimisation 
framework to explore nonlinearity and uncertainty. Global 
sensitivity analyses, e.g., screening methods, regression-based 
approach or variance-based methods represent potential di-
rections to advance the understanding of how input variation 
affect modelling evidences. Optimisation under uncertainty 
would be another direction worth exploring. In addition, it would 
be interesting to couple global sensitivity analyses and meta- 
modelling with our developed IES model to enable computational 
efficient way to incorporate the approximate mathematical rep-
resentation of complex simulators e.g. DNDC into eco-industrial 
energy optimisation.  

(d) The framework is featured by extensibility, adoptability, and 
scalability. The optimisation framework model can be potentially 
expanded to incorporate above-mentioned sensitivity analysis, 
in-depth scenario analyses, e.g., rooftop farming effects on local 
thermal demands and cover a broader scope of project lifecycle to 
inform decision-making. Model scalability is reflected by wider 
application in use cases. The rooftop farming concept and the 
proposed model could be adapted and scaled to large-scale case 
studies beyond industrial parks such as region-level urban com-
munities or business zones. The framework is expected to benefit 
wider stakeholders, e.g., industrial park designer or urban 

planners, to inform decision-making on, e.g., design options for 
energy-system decarbonisation. Beyond the region presented in 
current study, the developed framework could be applied to other 
countries or regions by considering local technical, economic, 
and environmental characteristics. 

5. Conclusions 

To decarbonise the energy systems in process industry, this study 
presents a nexus design by integrating rooftop farming into process in-
dustrial energy system optimisation. A model-based e-IES design opti-
misation framework is therefore proposed, which couples first-principle 
underpinned simulation, clustering algorithms, and mathematical opti-
misations. Within the framework, a rooftop farming database derived 
from computational simulation and clustered energy system data were 
generated to inform the optimisation model for optimal design of the 
eco-industrial energy system (e-IES) and the functional rooftop 
utilisation. 

The framework was applied to inform the e-IES decision-making 
under the context of an industrial park in China. Generally, imple-
menting rooftop farming could generate mutual benefits from both cost 
and carbon emission reduction perspectives when compared to either 
rooftop PV or unused rooftop. Significant benefit can be expected from 
decarbonisation perspective in comparison with economic benefits. The 
derived Pareto optimal solutions showed that lettuce cultivation under 
open farm represented the least cost option; while planting tomato in 
controlled greenhouse with elevated CO2 concentration (i.e., 20 ℃ and 
550 ppm CO2) could achieve the least GHG emission solution. 

The proposed modelling framework can be further extended to 
inform wider design case studies. Building on the proposed modelling 
framework, future research frontiers are to harness AI and data advances 
e.g. advanced learning algorithms for data analyses and hybrid search 
methods coupling exact and metaheuristic algorithms for responsive 
optimisation. 
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Appendix 

This appendix presents the model constraints in detail and all parameters that applied in the case study. 

A.1 Modelling constraints 

The definitions of parameters and variables are given in Tables A1-A3. 
The model is subject to the following constraints. 
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Energy balances. Three energy balances are modelled, i.e., electricity, cooling, and heating balances. Eq. (A1) constraints the electricity supply 
and demand balance. 

EE-CH
i,s,h + Eex

i,s,h + EHP
i,s,h + Echa

i,s,h + Edem
i,s,h = Edisc

i,s,h + Eim
i,s,h + ECHP

i,s,h (A1) 

where EE-CH is the electricity consumed by electric chiller, Eex is electricity fed back to the grid, EHP is electricity consumed by heat pump, Echa is 
electricity charged into battery storage, Edem is electrical demand to be met, Edisc is electricity discharged from battery storage, Eim is electricity 
purchased from the grid, ECHP is the electricity generated by CHP. 

Eq. (A2) constraints the heating supply and demand balance. 

Table A1 
Definitions of indices.  

Indices/subscript/ 
superscript 

Definitions 

s Sets of three representative seasons 
h Sets of 24 h 
i Sets of sites 
j Sets of sites, j ∕= i 
t Sets of energy devices, including combined heating and power (CHP), boiler (b), electric chiller (E-CHILLER), 

absorption chiller (A-CHILLER), heat pump (hp), battery storage (ELE-STO), cooling storage tank (COOL-STO) 
v Sets of crops (tomato, lettuce, celery, broccoli, radish, cabbage, and potato) 
k Sets of three rooftop farming options (k = 1 open farming, k = 2 ~ 10 conditioned greenhouse with different 

temperature and indoor CO2 control)  

Table A2 
Definitions of parameters.  

Parameters Definitions 

CCAP Unit capital cost [$/kW] of energy technologies, heating and cooling network, and unit capital cost [$/m2] 
of rooftop farming option 

DXi,j Distance between sites 
η Efficiency of individual energy technology 
H-to-P Heat-to-power ratio of CHP 
CNG Unit natural gas cost [$/kWh] 
Cmaint Maintenance cost [$/kWh] of energy technologies 
CRF Maintenance cost [$/year] of rooftop farming options 
CRF Capital recovery factor for 15, 20, 30 years 
Cim Unit price of purchased electricity from the grid [$/kWh] 
Cex Tariff for electricity feeed-back to grid [$/kWh] 
sales Unit price of selling produced crop yield [$/kg] 
Ψ Emission factor [kg/kWh] 
Ai Available roof area in i site [m2] 
Qh-dem and Qc-dem Heating and cooling demand for each site 
Edem Electricity demand for each site 
Qh-roof and Qh-roof Thermal demand savings for each site 
Lossc-pipe and Lossh- 

pipe 
Thermal loss rate for cooling (Loc-pipe) and heating network (Loh-pipe) 

(.) Upper bound value 
M The “big M” big enough values for M1 and M2  
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Fig. A1. Weather condition for DNDC simulation and energy prices in system optimisation model. a, rainfall and temperature at daily basis; b, tariffs for 
purchased electricity (grid_buy), fed-back to grid (grid_sell), natural gas for CHP use (NG_chp), and natural gas for boiler use (NG_b). 
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(

Qh-dem
i,s,h −

∑

v

∑

k
φRF

i,v,k × Qh-roof
i,s,h,v,k

)

+
∑

j
Qhf(i,j)

i,j,s,h + QA-CH’
i,s,h =

Qre
i,s,h + QHP

i,s,h + QB
i,s,h +

∑

j
Qhf(j,i)

j,i,s,h × (1 − Lossh-pipe) ∀j ∕= i
(A2) 

where Qh-dem is the representative heating demand, φRF is the binary variable to ensure only one rooftop farming option been selected, Qh-roof is 
heating savings due to rooftop farming induced insulation improvement, Qhf(i,j) is heating flow from site i to j, QA-CH’ is heating been utilised to 
generate cooling by absorption chiller, Qre is recovered heating from CHP power generation, QHP is heating supply from heat pump, QB is heating 
supply from boiler, Qhf(j,i) is heating flow from site j to i, Lossh-pipe is heating loss rate during energy transfer. 

Eq. (A3) constraints the cooling supply and demand balance. 
(

Qc-dem
i,s,h −

∑

v

∑

k
φRF

i,v,k × Qc-roof
i,s,h,v,k

)

+ Qcha
i,s,h +

∑

j
Qcf(i,j)

i,j,s,h =

QA-CH
i,s,h + QE-CH

i,s,h +
∑

j
Qcf(j,i)

j,i,s,h × (1 − Lossc-pipe) + Qdisc
i,s,h ∀j ∕= i

(A3) 

where Qc-dem is the representative cooling demand, φRF is the binary variable to ensure only one rooftop farming option been selected, Qc-roof is 
cooling savings due to rooftop farming induced insulation improvement, Qcha is cooling energy been charged into storage tank, Qcf(i,j) is cooling flow 
from site i to j, QA-CH is cooling supply from absorption chiller, QE-CH is cooling supply from electric chiller, Qcf(j,i) is cooling flow from site j to i, Lossc- 

pipe is cooling loss rate during energy transfer, Qdisc is cooling been discharged from storage tank. 
Energy conversion. The energy conversion constraints are shown by Eq. (A4). 

Table A3 
Definitions of variables.  

Variables Definitions 

TAC The objective of total annualised cost [$/year] 
ACE The objective of annualised CO2 emissions [ton/year] 
Binary Variables  
φRF =1 if select a certain crop and a certain planting pattern 
βCHP =1 if CHP is on 
XCHP =1 if CHP is switching from off to on 
αcha =1 if energy is charged into storage 
αdisc =1 if energy is discharged from storage 
δex =1 if electricity is fed back to the grid 
δim =1 if electricity is bought from the grid 
δDH =1 if district heating network is built 
δDC =1 if district cooling network is built 
γDH =1 if site i receiving heating 
γDC =1 if site i is receiving cooling 
Positive Variables  
CAPEX The capital cost of the whole system [$] 
FC The fuel cost [$/year] 
MC The maintenance cost [$/year] 
GC The grid electricity cost [$/year] 
YI The food yield income [$/year] 
CAP The installed capacity of each energy technology [kW] 
ECHP The electricity output from CHP [kWh] 
QHP The heating output from heating pump [kWh] 
QB The heating output from boiler [kWh] 
QA-CH The cooling output from absorption chiller [kWh] 
QE-CH The cooling output from electric chiller [kWh] 
Qst The cooling stored in storage tank [kWh] 
EE-CH The electricity consumed by electric chiller [kWh] 
Est The electricity stored in battery [kWh] 
Eim The electricity bought from the grid [kWh] 
Eex The electricity sold back to the grid [kWh] 
Qhf(i,j) The heating flow from site i to j [kWh] 
Qhf(j,i) The heating flow from zone j to i [kWh] 
Qcf(i,j) The cooling flow from site i to j [kWh] 
Qcf(j,i) The cooling flow from site j to i [kWh] 
Qre The heating output from CHP [kWh] 
Qcha The cooling charge into cooling storage [kWh] 
Qdisc The cooling energy discharged [kWh] 
Echa The electricity charge into battery storage [kWh] 
Edisc The electricity discharged [kWh] 
NGB The natural gas consumed by boiler [kWh] 
NGCHP The natural gas consumed by CHP [kWh]  
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QE-CH
i,s,h = ηE-CH × EE-CH

i,s,h

QA-CH
i,s,h = ηA-CH × QA-CH’

i,s,h

QHP
i,s,h = ηHP × EHP

i,s,h

QB
i,s,h = ηB × NGB

i,s,h

ECHP
i,s,h = ηCHP × NGCHP

i,s,h

Qre
i,s,h = H-to-P × ECHP

i,s,h

(A4) 

where η denotes efficiency, QE-CH is cooling supply from electric chiller, EE-CH is the electricity consumed by electric chiller, QA-CH is cooling supply 
from absorption chiller, QA-CH’ is heating been utilised to generate cooling by absorption chiller, QHP is heating supply from heat pump, EHP is 
electricity consumed by heat pump, QB is heating supply from boiler, NGB is natural gas been consumed by boiler, ECHP is the electricity generated by 
CHP, NGCHP is natural gas been consumed by CHP, Qre is recovered heating from CHP power generation, H-to-P is the heat to power ratio for CHP. 

Operation constraints. Operation constraints are implemented for CHP to avoid low demand operations and possible efficiency drop. The 
minimum part demand (MPL) as a percentage of full capacity is set to avoid CHP operating at low demand when the engine is on. 

ECHP
i,s,h ⩽βCHP

i,s,h × M1

ECHP
i,s,h ⩾(βCHP

i,s,h − 1) × M2 + MPL × CAPCHP
i 

(A5a) (A5b) 

where CAPCHP is CHP installed capacity, and βCHP is a binary variable to control on/off status of CHP (βCHP = 1 is on). M1 and M2 are both big 
enough values. 

To avoid frequently on/off of CHP, only switching on one time per day is allowed as formulated in Eq. (A6). 
∑

h
χCHP

i,s,h ⩽1 (A6a)

χCHP
i,s,h ⩾βCHP

i,s,h − βCHP
i,s,h− 1 (A6b)

χCHP
i,s,h ⩽1 − βCHP

i,s,h− 1 (A6c)

χCHP
i,s,h ⩽βCHP

i,s,h (A6d)

(A6) 

where χ is a binary variable to control the frequency of switching on/off. 
To avoid drastic fluctuation of CHP’s power output, the power output fluctuation between last and this time-step cannot be larger than a threshold 

(THR) of CHP’s installed capacity. 

ECHP
i,s,h − ECHP

i,s,h− 1⩽THR × CAPCHP
i (A7a)

ECHP
i,s,h− 1 − ECHP

i,s,h ⩽THR × CAPCHP
i (A7b)

(A7) 

where ECHP is the electricity generated by CHP, CAPCHP is the installed capacity of CHP. 
Storage constraints. Battery and cooling storage are enabled in our model. Here, we show the battery storage constraints as illustrative example, 

the cooling storage constraints are similar from the modelling perspective with different inputs. 

Est
i,s,h = ηst × Est

i,s,h− 1 + ηcha × Echa
i,s,h − Edisc

i,s,h/ηdisc (A8a)
Est

i,s,h⩽CAPst
i (A8b)

Echa
i,s,h⩽αcha

i,s,h × Echa
i,s,h

(A8c)

Edisc
i,s,h⩽αdisc

i,s,h × Edisc
i,s,h (A8d)αdisc

i,s,h + αcha
i,s,h⩽1 (A8e) (A8) 

where ηcha, ηdisc, ηst are energy charge, discharge, and in-storage efficiency; CAPst is the installed capacity of the battery; Echa is electricity been 
charged into the battery; Edisc is electricity been discharged from the battery; Est is electricity stored in battery; α is a binary variable to avoid the 
cooling energy charging and discharging simultaneously. 

Grid connections. The electricity purchased and fed-back to utility grid are formulated by Eq. (A9). 

0⩽Eex
i,s,h⩽δex

i,s,h × Eex
i,s,h (A9a)

0⩽Eim
i,s,h⩽δim

i,s,h × Eim
i,s,h (A9b)

δex
i,s,h + δim

i,s,h⩽1 (A9c) (A9) 

where Eim and Eex are electricity been purchased and fed-back to the grid; δex and δim are binary variables to represent the export/import status and 
avoid power export and import simultaneously. 

Network constraints. Cooling and heating network constraints are similar from the modelling perspective. The heating can only be transferred 
when two sites are connected via heating pipework as defined in Eq. (A10a). The connection between two sites can only be done by at most one time in 
Eq. (A10b). 

∑

j
Qhf(i,j)

i,j,s,h ⩽δDH
i,j × Qhf(i,j)

i,j,s,h ∀j ∕= i (A10a)

δDH
i,j + δDH

j,i ⩽1 ∀j ∕= i (A10b)

where Qhf(i,j) is heating flow from site i to j, δDH is a binary variable to denote the connection or not among sites (1 is connected, 0 is not). 
Similarly, cooling transfer can only happen if cooling pipework exists among sites as derived in Eq. (A11). 
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∑

j
Qcf(i,j)

i,j,s,h ⩽δDC
i,j × Qcf(i,j)

i,j,s,h ∀j ∕= i (A11a)

δDC
i,j + δDC

j,i ⩽1 ∀j ∕= i (A11b)

` 

Each site i cannot simultaneously receive and transfer energy to other sites j as constrained by Eq. (A12). 

∑

j
Qcf(i,j)

i,j,s,h ⩽γDC
i,s,h × Qcf(i,j)

i,j,s,h ∀j ∕= i (A12a)

∑

j
Qcf(j,i)

j,i,s,h ⩽(1− γDC
i,s,h) × Qcf(j,i)

j,i,s,h ∀j ∕= i (A12b)

∑

j
Qhf(i,j)

i,j,s,h ⩽γDH
i,s,h × Qhf(i,j)

i,j,s,h ∀j ∕= i (A12c)

∑

j
Qhf(j,i)

j,i,s,h ⩽(1− γDH
i,s,h) × Qhf(j,i)

j,i,s,h ∀j ∕= i (A12d)

(A12) 

where Qcf(i,j) is cooling flow from site i to j, Qcf(j,i) is cooling flow from site j to i, Qhf(i,j) is heating flow from site i to j, Qhf(j,i) is heating flow from site j 
to i, γDH and γDC are binary variables to control the status of transfer or receive for heating and cooling transfer. 

A.2 Parameterisation for case study 

All the parameters in the case study are presented below (see Tables A4-A12). 

Table A4 
A list of parameters applied in the optimisation model [6,24,44].  

Parameters Definitions Values 

CCAP
CHP  Unit capital cost of CHP [$/kW] 800 

CCAP
B  Unit capital cost of boiler [$/kW] 60 

CCAP
E-CH  Unit capital cost of electric chiller [$/kW] 200 

CCAP
A-CH  Unit capital cost of absorption chiller [$/kW] 250 

CCAP
HP  Unit capital cost of heat pump [$/kW] 200 

CCAP
pipe  Unit capital cost of heating and cooling network [$/m] 200 

CCAP
b-st  Unit capital cost of battery storage [$/kWh] 700 

CCAP
c-st  Unit capital cost of cooling storage tank [$/kWh] 60 

CCAP
k  Unit capital cost of k rooftop agriculture option [$/m2] =12 when k = 1, =45 when k = 2 ~ 10 

DXi,j  Distance between zones See Fig. 4b 
ηCHP Efficiency of CHP (ele) 0.4 
H-to-P Heat-to-power rate of CHP 0.8 
ηB Efficiency of boiler 0.85 
ηE-CH Efficiency of electric chiller 4 
ηA-CH Efficiency of absorption chiller 1.2 
ηHP Efficiency of heat pump 2.5 
ηst

batt  Efficient of battery storage self-discharge 0.95 

ηcha/disc
batt  

Efficient of battery storage charge/discharge 0.93 

ηst
cool  Efficient of cooling storage self-discharge 0.9 

ηcha/disc
cool  

Efficient of cooling storage charge/discharge 0.9 

CCHP-NG
h  Unit cost of natural gas for CHP [$/kWh] See Fig. A1 

CB-NG
h  Unit cost of natural gas for boiler [$/kWh] See Fig. A1 

Cmaint
CHP  Maintenance cost of CHP [$/kWh] 0.003 

Cmaint
B  Maintenance cost of boiler [$/kWh] 0.0003 

Cmaint
E-CH  Maintenance cost of electric chiller [$/kWh] 0.001 

Cmaint
A-CH  Maintenance cost of absorption chiller [$/kWh] 0.001 

Cmaint
HP  Maintenance cost of heat pump [$/kWh] 0.001 

(continued on next page) 

R. Jing et al.                                                                                                                                                                                                                                     



Applied Energy 290 (2021) 116773

14

Table A5 
Capital and operational costs for the simulated lettuce.  

lettuce OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7 OPT8 OPT9 OPT10 

Capital cost ($/ha) 120,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 
Fertiliser ($/ha/year) 43,200 35,760 35,760 35,760 35,760 35,760 35,760 35,760 35,760 35,760 
Water ($/ha/year) 357 1,486 1,377 1,324 1,328 1,311 1,235 1,329 1,302 1,266 
Energy ($/ha/year) 945 9,450 9,450 9,450 11,840 11,840 11,840 15,130 15,130 15,130 
Labor ($/ha/year) 63,428 105,714 105,714 105,714 105,714 105,714 105,714 105,714 105,714 105,714  

Table A6 
Capital and operational costs for the simulated broccoli.  

broccoli OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7 OPT8 OPT9 OPT10 

Capital cost ($/ha) 120,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 
Fertiliser ($/ha/year) 14,400 14,400 14,400 14,400 14,400 14,400 14,400 14,400 14,400 14,400 
Water ($/ha/year) 357 1,006 1,004 987 1,019 1,024 1,028 1,106 1,026 1,032 
Energy ($/ha/year) 945 9,450 9,450 9,450 11,840 11,840 11,840 15,130 15,130 15,130 
Labor ($/ha/year) 63,428 105,714 105,714 105,714 105,714 105,714 105,714 105,714 105,714 105,714  

Table A7 
Capital and operational costs for the simulated tomato.  

tomato OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7 OPT8 OPT9 OPT10 

Capital cost ($/ha) 120,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 
Fertiliser ($/ha/year) 29,714 10,588 10,588 10,588 10,588 10,588 10,588 10,588 10,588 10,588 
Water ($/ha/year) 1,429 6,064 5,483 4,981 5,192 4,763 4,387 4,974 4,384 3,841 
Energy ($/ha/year) 945 9,450 9,450 9,450 11,840 11,840 11,840 15,130 15,130 15,130 
Labor ($/ha/year) 63,428 105,714 105,714 105,714 105,714 105,714 105,714 105,714 105,714 105,714  

Table A8 
Capital and operational costs for the simulated cabbage.  

cabbage OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7 OPT8 OPT9 OPT10 

Capital cost ($/ha) 120,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 
Fertiliser ($/ha/year) 106,285 106,285 106,285 106,285 106,285 106,285 106,285 106,285 106,285 106,285 
Water ($/ha/year) 1,000 2,399 2,154 2,056 1,736 1,421 1,243 1,564 1,336 1,207 
Energy ($/ha/year) 945 9,450 9,450 9,450 11,840 11,840 11,840 15,130 15,130 15,130 
Labor ($/ha/year) 63,428 105,714 105,714 105,714 105,714 105,714 105,714 105,714 105,714 105,714  

Table A4 (continued ) 

Parameters Definitions Values 

Cmaint
b-st  Maintenance cost of battery storage [$/kWh] 0.003 

Cmaint
c-st  Maintenance cost of cooling storage tank [$/kWh] 0.0003 

CRF Capital recovery factor for 15, 25, 30 years 0.103, 0.085, 0.073 
Cim

h  Unit price of grid electricity purchasing at hour h [$/kWh] See Fig. A1 

Cex
h  Tariff for electricity sold back to grid at hour h [$/kWh] See Fig. A1 

Edem Hourly electricity demand See Fig. 5 
Ψgrid Emission factor of the grid electricity [kg/kWh] 0.45 
ΨNG Emission factor of natural gas power generation [kg/kWh] 0.18 
ψagri

k  
Emission factor of k rooftop agriculture option See Table 4 

Ai Available roof area in i zones [m2] See Fig. 4 
CRF

v  Unit price of selling each crop [US$/kg] See Table A12 

MPL Minimum part load of CHP 30% 
M1 Big M for CHP model, the value may choose twice of peak electricity demand see Fig. 5 
M2 Big M for CHP model, the value may choose twice of peak electricity demand see Fig. 5 
yieldv,k Annual yield [kg/ha/year] See Table 3 
Qh-load

i,s,h  Hourly heating demand See Fig. 5 

Qc-load
i,s,h  Hourly cooling demand See Fig. 5 

Qh-roof
i,s,h,k  Heating demand saving rate by implementing rooftop farming options 4%, 6% of original demand 

Qc-roof
i,s,h,k  Cooling demand saving rate by implementing rooftop farming options 4%, 6% of original demand 

THR Threshold of CHP output variations as a percentage of its installed capacity 50% 
Lossc-pipe Cooling network thermal loss rate 6% 
Lossh-pipe Heating piping thermal loss rate 5%  
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Table A12 
Unit price for selling each crop.  

Crop lettuce broccoli tomato cabbage potato radish celery 

Unit price [US$/kg] 0.62 0.90 0.50 0.30 0.32 0.32 0.78  

Table A9 
Capital and operational costs for the simulated potato.  

potato OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7 OPT8 OPT9 OPT10 

Capital cost ($/ha) 120,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 
Fertiliser ($/ha/year) 121,714 162,285 162,285 162,285 162,285 162,285 162,285 162,285 162,285 162,285 
Water ($/ha/year) 214 896 884 865 1,205 997 911 1,434 1,306 1,197 
Energy ($/ha/year) 945 9,450 9,450 9,450 11,840 11,840 11,840 15,130 15,130 15,130 
Labor ($/ha/year) 63,428 105,714 105,714 105,714 105,714 105,714 105,714 105,714 105,714 105,714  

Table A10 
Capital and operational costs for the simulated radish.  

radish OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7 OPT8 OPT9 OPT10 

Capital cost ($/ha) 120,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 
Fertiliser ($/ha/year) 12,580 15,725 15,725 15,725 15,725 15,725 15,725 15,725 15,725 15,725 
Water ($/ha/year) 214 843 734 641 997 931 656 986 909 721 
Energy ($/ha/year) 945 9,450 9,450 9,450 11,840 11,840 11,840 15,130 15,130 15,130 
Labor ($/ha/year) 63,428 105,714 105,714 105,714 105,714 105,714 105,714 105,714 105,714 105,714  

Table A11 
Capital and operational costs for the simulated celery.  

celery OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7 OPT8 OPT9 OPT10 

Capital cost ($/ha) 120,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 
Fertiliser ($/ha/year) 61,714 68,114 68,114 68,114 68,114 68,114 68,114 68,114 68,114 68,114 
Water ($/ha/year) 357 2,602 2,460 2,379 2,091 1,980 1,874 3,197 3,001 2,836 
Energy ($/ha/year) 945 9,450 9,450 9,450 11,840 11,840 11,840 15,130 15,130 15,130 
Labor ($/ha/year) 63,428 105,714 105,714 105,714 105,714 105,714 105,714 105,714 105,714 105,714  
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