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ABSTRACT: Pathogenic bacterial infections, exacerbated by increasing anti-
microbial resistance, pose a major threat to human health worldwide. Extracellular
vesicles (EVs), secreted by bacteria and acting as their “long-distance weapons”,
play an important role in the occurrence and development of infectious diseases.
However, no efficient methods to rapidly detect and identify EVs of different
bacterial origins are available. Here, label-free Raman spectroscopy in combination
with a new deep learning model of the attentional neural network (aNN) was
developed to identify pathogen-derived EVs at Gram±, species, strain, and even
down to physiological levels. By training the aNN model with a large Raman data
set from six typical pathogen-derived EVs, we achieved the identification of EVs
with high accuracies at all levels: exceeding 96% at the Gram and species levels,
93% at the antibiotic-resistant and sensitive strain levels, and still above 87% at the
physiological level. aNN enabled Raman spectroscopy to interrogate the bacterial
origin of EVs to a much higher level than previous methods. Moreover, spectral markers underpinning EV discrimination were
uncovered from subtly different EV spectra via an interpretation algorithm of the integrated gradient. A further comparative analysis
of the rich Raman biochemical signatures of EVs and parental pathogens clearly revealed the biogenesis process of EVs, including the
selective encapsulation of biocomponents and distinct membrane compositions from the original bacteria. This developed platform
provides an accurate and versatile means to identify pathogen-derived EVs, spectral markers, and the biogenesis process. It will
promote rapid diagnosis and allow the timely treatment of bacterial infections.

■ INTRODUCTION
Bacterial infections, especially antibiotic-resistant (AMR)
pathogen infections, are listed as the top 10 threats to global
health by the World Health Organization.1,2 In 2019, the
global burden of infections with drug-resistance-related
pathogens was estimated at 4.95 million deaths, of which
1.27 million deaths were directly attributable to AMR.3 During
infections, pathogenic bacteria-derived extracellular vesicles
(EVs) have been regarded as bacterial “long-distance weapons”
in initiating pathological events.4,5 EVs are nanosized lipid
bilayer spheres with a size ranging from 30 to 400 nm.6 They
are naturally secreted from cells in all domains of life, including
bacteria, mammalian cells, archaea, and fungi.7 Numerous
studies have shown that EVs are abundantly released from
pathogenic bacteria and harbor the components from the
parental pathogens, such as proteins, nucleic acids, carbohy-
drates, lipids, and virulence factors.8,9 Moreover, these
nanoscale particles are small enough to cross the blood−
brain, placental, and air−blood barriers that bacteria cannot
reach to deliver bacterial toxins to host cells, eliciting the host
immune system and potentially accelerating bacterial in-
fections.5,10,11 For example, pathogen-derived EVs have been
found to permeate the blood−brain barrier of infected mice12

and to be present in body fluids and tissue biopsies, such as in
the cerebrospinal fluid of patients with meningococcal

disease.10 In addition, EVs derived from pulmonary
commensal microbes were reported to deliver lipopolysacchar-
ide (LPS) and lipoprotein contents to macrophages, inducing
interleukin-17β expression and promoting pulmonary fibro-
sis.13 In another study, EVs from pathogenic Neisseria
gonorrheae, Escherichia coli, and Pseudomonas aeruginosa caused
mitochondrial dysfunction and immune responses in macro-
phages.14 Because pathogen-derived EVs play a leading role in
pathological initiation and are widely present in body fluids,
they have great potential as a diagnostic test for bacterial
infections. Therefore, rapid and accurate identification of EVs
of different bacterial origins is very important for the early
diagnosis of infection, timely intervention, and treatment
guidance.

However, unlike mammalian cell-derived EVs with specific
membrane protein markers such as ALIX, TSG101, CD9, and
CD63,15 specific recognition components in pathogen-
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originated EVs are largely lacking or obscure, hindering the
employment and development of efficient identification
strategies. Currently, conventional methods used to detect
and identify cancer cell- or tissue-derived EVs, such as Western
blot and enzyme-linked immunosorbent assays, cannot work
on bacterial EVs.16 In some cases, Gram classification of
bacterial EVs is possible on the basis of the unique surface
component of lipoteichoic acid and LPS in Gram-positive and
Gram-negative bacteria,17 but a high taxonomic classification is
not allowed. In addition, although 16S rRNA-based genomic
sequencing can be used to identify bacteria at the genus and
even species level,18 it is not applicable for bacteria-derived
EVs because there are no gene databases available for
comparison with bacteria EVs. Moreover, EVs do not always
harbor enough genetic material for identification. Accordingly,
there remains a critical technical hurdle in identifying EVs from
different pathogen sources.

Raman spectroscopy is emerging as a valuable tool for the
label-free, rapid, and sensitive identification of biological
samples.19 Raman spectroscopy can provide an intrinsic
biochemical profile of cells, including nucleic acids, proteins,
lipids, carbohydrates, pigments, and metabolites,20 by exciting
the samples with a laser to obtain their fingerprint vibrational
information in an inelastic way. This information provides an
exquisite molecular basis for resolving the cellular identity.
Through the combination with state-of-the-art machine
learning and deep learning algorithms, subtle spectral differ-
ence can be captured from complex Raman spectra with
improved efficiency, enabling the differentiation of different
biological samples by Raman spectroscopy. Currently, Raman
spectroscopy was assisted by a support vector machine (SVM)
to identify pathogenic Legionella at the genus, species, and
down to subspecies level.21 Recently, Raman spectroscopy was
coupled with a convolutional neural network (CNN)-based
deep learning approach to accurately identify 30 bacterial
pathogens, including methicillin-resistant and susceptible
strains, and validate the results on clinical bacteria isolated
from patients.22 A combination of Raman spectroscopy and
residual neural network (ResNet)-based deep learning was able
to achieve a binary classification of EVs derived from normal
and lung cancer cells.23 However, Raman spectroscopy has
never been explored for discerning bacterial pathogen-derived
EVs, whose compositions are distinct from those of human
cells. In addition, the diagnosis and treatment of bacteria-
induced infections require the identification of pathogens at
the species, strain (e.g., drug-resistant and sensitive), and even
down to physiological levels. The discrimination of bacteria
with increased similarity is becoming more challenging, and it
is still unclear about the power of Raman spectroscopy for
discriminating bacteria-derived EVs at various taxonomic or
physiological levels. Moreover, although EV biogenesis is
generally regarded as the process that involves the shuttling of
cellular contents from donor bacteria to EVs,5,24 a detailed
understanding of the substances loaded in EVs is still lacking.
The rich chemical information on Raman spectra may provide
a clue to interrogating the biogenesis process of EVs.

In this work, a total of six typical clinical bacterial pathogens
and their derived EVs were collected and extracted. A large
Raman database including 4335 spectra from 3 independent
measurements of EVs was obtained. To explore the power of
Raman spectroscopy in resolving EVs to different levels, a new
deep learning model of the attentional neural network (aNN)
and the feature extraction algorithm of the integrated gradient

(IG) were developed and employed to improve the
identification accuracy and interpretation capability, respec-
tively. Their performance was compared to that of five other
machine/deep learning algorithms previously reported for
bacteria identification. By using these techniques, we aim to
(1) explore the capacity of Raman spectroscopy in identifying
EVs from different pathogen origins at different hierarchies
from Gram-positive (G+) and Gram-negative (G−), species,
strains, and down to physiological states; (2) explore the
potential spectral markers of different EVs with the newly
developed interpretation algorithm; and (3) reveal the
biogenesis process of EVs by systematically comparing the
spectral signatures of EVs with their host pathogens. This work
provides a new and accurate means for identifying pathogen-
derived EVs and their generation process. Combined with the
single-particle analysis platform, our method is expected to be
applied to clinical samples (blood, urine, and sputum). It holds
great promise for the early diagnosis of bacterial source of
infection, guiding timely treatment and answering the
fundamental question of EV-triggered infection.

■ METHODS
Bacterial Species and Growth Conditions. The

information on bacterial species is listed in Table S1. Bacteria
were cultured at 37 °C and 150 rpm overnight. Unless
explicitly stated, all chemicals used in the cultivation process
were purchased from Sinopharm Chemical Reagent Co.,
China.
EV Isolation. To isolate EVs from bacteria, the culture

medium (500 mL) was centrifuged first at 8000g for 20 min to
remove detached cells. The resulting supernatant was then
concentrated with an ultrafiltration centrifugal tube (100-KDa,
Millipore, USA) to reach a volume of 10 mL. Then the
medium was centrifuged at 12 000g for 45 min, processed by
0.22 μm membrane filtration (Millipore, USA), and ultra-
centrifuged at 120 000g for 90 min. Pellets were resuspended,
pooled in 12 mL of sterile water instead, and reultracentrifuged
at 120 000g for 90 min at 4 °C. The EVs were obtained by
suspending the pellet in 200 μL of sterile water.
TEM and nFCM Analysis. The characterization of EVs

with transmission electron microscopy (TEM) was performed
according to our previous report with some modifications.25

The EVs’ concentration and size distribution were quantified
using the Nanoflow cytometer (N30E, NanoFCM).26 A
NanoFCM silica nanospheres cocktail containing a mixture
of silica nanospheres (diameters: 68 to 155 nm) was used as a
size reference. For the EVs’ concentration calculation, a
NanoFCM silica nanosphere cocktail at different concen-
trations was first measured to create a standard working curve.
EVs diluted with PBS were then measured, and the particle
concentration was calculated using the standard working curve.
Raman Spectra Acquisition and Data Processing. All

bacterial samples were washed with sterile water three times to
remove residual media. Isolated EV samples can be directly
used for detection. An aliquot of 3 μL of sample was dropped
onto the aluminum (Al) foil to ensure a low and featureless
background signal, which was air-dried at room temperature
prior to Raman measurements. Raman spectra were measured
with a LabRAM Aramis confocal Raman microscope
(HORIBA Jobin Yvon, Japan) equipped with a 300 g/mm
grating. A 532 nm Nd:YAG laser (Laser Quantum, USA) with
a power of 5 mW was focused onto the sample spot through a
100× objective (Olympus, NA = 0.90). To acquire consistent
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Raman spectra, the Raman spectrometer was calibrated with
the Raman band of a silicon wafer at 520.6 cm−1. The
measurement was performed at an acquisition time of 9 s. A
total of three independent biological replicates and two
technical replicates were used for each sample. Biological
replicates mean that each bacterial species was cultured for a
total of three times, followed by EV extraction and Raman
detection at each time. Technical replicates refer to when
preparing EVs for Raman analysis at each time, two copies
were prepared simultaneously to eliminate human or machine
error. Savitzky−Golay filter with a window size of 7 and an
order of 3 was used to denoise. After the subtraction of the
biofluorescence background, spectra were individually normal-
ized with the maximum peak value.
Statistical Analysis. All statistical comparisons of Raman

spectra were performed with SPSS 25.0 (SPSS, Chicago, IL,
USA) software. The results were presented as the mean ±
standard deviation (SD). After verifying the normality and
equality, we conducted one-way analysis of variance (ANOVA)
for the differences among multiple groups followed by a post
hoc Tukey’s test. Individual data that did not meet the above
requirements were analyzed with Kruskal−Wallis H (K). A p
value of <0.05 was defined as statistically significant. The
intensity of Raman bands from hundreds of spectra was

displayed by points, and the quartiles distribution was shown
as a box plot.
Machine Learning Model. In this study, principal

component analysis (PCA) and PCA combined with linear
discriminant analysis (PCA-LDA) analysis were implemented
by MATLAB 2017a.27 SVM with different kernels was
implemented by Python API of sci-kit learn. The architecture
of ResNet is similar to that of Ho.22

The aNN module used in this article is inspired by the
convolutional block attention module.28 The attention module
is divided into channel attention and wavenumber attention.
Channel attention is used to filter characteristics of different
signal frequencies, and wavenumber attention is used to filter
characteristics of different Raman shifts. Details of the
architecture and mechanism of attention module are shown
in Text S1.

During training, we found that the training difficulty for
different samples is not the same, and easily identified species
often occupied the main gradient of back-propagation, making
it difficult to correct the misclassification in time. We used
weighted cross entropy as the loss function to solve this
problem. According to the training results, we adjusted the
weights of one or several categories in time to achieve better
classification performance.

The formula for weighted cross entropy is as follows

Figure 1. Characterization of EVs obtained from six different pathogens. (a) Particle size distribution histogram of EVs derived from E. coli, P.
aeruginosa, C. joostei, S. enterica, S. aureus, and E. faecalis using an nFCM measurement. (b) Wide-field TEM image of EVs. The representative image
is chosen from three independent repeats. Scale bar, 100 nm.
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where x is the output of the model, class is the category
involved in calculating the loss, n is the total number of
categories, and w is the weight of a category. The weight
distribution of the four classification levels is shown inTable
S2.

Unless otherwise specified, traditional CNN mentioned
below refers to the aNN without the attention module, which
is convenient for comparing the effect of the attention module.
IG-Based Raman Spectral Feature Extraction. After

training, an integrated gradient (IG)29 was used to uncover
distinct spectral markers. An integrated gradient is a back-
propagation-based feature-attribution algorithm. Unlike a
traditional saliency map, a baseline needs to be selected first.
Then the integral from the baseline to the input spectrum was
calculated to represent the relative difference between them.
The gradient value of the ith Raman shift was calculated as
follows

I x x
F x x x

x
( )
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di i i
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1
= +
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F x

x
( )

di i
i0

1
=

(3)

where x is the input spectrum, x′ is the baseline spectrum, xi is
the intensity of the ith Raman shift of the input spectrum, F is
the model that need to be interpreted, and α is a scale factor.

We choose the zero vector as a baseline in this article. As a
result, eq 2 can be simplified to eq 3. Details about the
integrated gradient are shown in Text S2.

■ RESULTS AND DISCUSSION
Isolation and Characterization of Pathogen-Derived

EVs. EVs were extracted from six typical pathogenic bacterial
species, including E. coli, P. aeruginosa, Chryseobacterium joostei,
Salmonella enterica, Staphylococcus aureus, and Enterococcus
faecalis (Table S3). Among them, S. aureus and E. faecalis are
Gram-positive and E. coli, P. aeruginosa, C. joostei, and S.
enterica are Gram-negative. These bacteria can cause numerous
clinical infections including bacteremia, urinary tract infections,
bacterial endocarditis, meningitis, and acute pneumonias.30,31

Each pathogen was cultured in triplicate and harvested in the
stationary phase.

EVs were successfully isolated using an ultracentrifugation
protocol and characterized following the guidelines of the
Information for Studies of Extracellular Vesicles 2018.16

NanoFCM was employed to determine the size and quantity
of the collected EVs. Figure 1a shows that most EVs fall in the
size range of 40−150 nm, which is the typical size of EVs
reported in previous works.5,24 The average size of EVs derived
from the six pathogens did not differ significantly: 66.3 ± 7.0
nm (E. coli), 61.8 ± 4.9 nm (P. aeruginosa), 73.6 ± 11.8 nm (C.
joostei), 72.6 ± 10.5 nm (S. enterica), 72.7 ± 12.7 nm (S.
aureus), and 72.9 ± 12.7 nm (E. faecalis). TEM was also used
to characterize the morphology of EVs, and a classical “cup-
shaped” morphology was observed (Figure 1b). As such, both
the size analysis and TEM images demonstrated the successful
extraction of pathogen-derived EVs.
Raman Profiling and Classification of EVs and Their

Host Pathogens. By using the as-prepared EVs, a large
Raman database containing 4335 spectra from 3 independent
batches of EVs was established. To minimize the potential
deviation, EVs were all isolated from pathogens in the same
growth stage of the stationary phase. Spectra from three
independent biological replicates are consistent. Figure 2a,b

Figure 2. Raman signatures and classification of pathogenic bacteria and their derived EVs. Average Raman spectra of (a) EVs and (b) their host
pathogenic bacteria. The thick solid line and shadow area represent the mean and standard deviations of spectra, respectively. PCA-LDA analysis of
the Raman spectra obtained from (c) pathogens, (d) EVs, and (e) both.
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shows the average Raman spectra with corresponding standard
deviations of EVs and their parent pathogens in the spectral
ranges of 800−1800 and 2700−3200 cm−1.

Prominent Raman peaks related to the biological constitu-
ents of EVs can be observed at 826 cm−1 (O−P−O stretch
DNA), 1003 cm−1 (ring breathing of phenylalanine), 1130
cm−1 (C−C stretching of carotenoid-like substance), 1205
cm−1 (C−N stretching and N−H bending of amide III), 1320
cm−1 (ring breathing of DNA/RNA bases), 1450 cm−1 (CH2
bending of lipid), 1525 cm−1 (C−C and conjugated C�C
stretching of carotenoid), 1600 cm−1 (C−C in-plane bending
mode of phenylalanine and tyrosine), and 2938 cm−1 (C−H
stretching of lipids and proteins). The presence of these peaks
indicated that EVs contained nucleic acids, proteins, lipids, and
pigment. A direct visual inspection of EV spectra revealed that
except for C. joostei-derived EVs, all other EVs exhibited highly
similar spectral features, indicating their similar compositions.
By comparison, relatively obvious differences were observed
between EVs and parental pathogens, revealing that the
chemical compositions of EVs were distinct from bacteria.

To highlight and visualize the spectral difference, all of the
obtained high-dimension spectral data were subjected to
multivariate dimension-reducing processing via PCA-LDA.
The derived two-dimensional scores plotted at the 0.95
confidence level are shown in Figure 2c−e. It is interesting
to find that the PCA-LDA clusters of six pathogens are all well
separated (Figure 2c) whereas those of EVs overlapped to a
certain degree (Figure 2d), indicating a smaller spectral
difference among EVs than among parental bacteria. It is
therefore more challenging to classify and identify EVs than

pathogens. Moreover, when pooling all of the spectral data
from pathogens and EVs, PCA-LDA plots of EVs and
pathogens were clearly divided into two categories, indicating
their large spectral difference (Figure 2e). This finding
indicates that although nearly all of the biological materials
carried by EVs are from the parent cells, some biomaterials are
preferentially carried by EVs or at least in different portions
from parent cells. Recent studies on the proteomics and
transcriptome of bacteria and archaea reported the similar
phenomenon that some specific protein and RNA cargoes were
preferably carried by EVs.32−34

Deep Learning-Enabled EV Identification at Multi-
hierarchies via the Attentional Neural Network. Because
the PCA-LDA scores plot did not provide clear cluster
boundaries for the various pathogen-derived EVs, we employed
a new deep learning algorithm of aNN to construct
classification models to identify EVs of different pathogen
origins based on their Raman spectra. aNN is constructed by
incorporating a convolutional neural network with an attention
module in order to better extract the differences in the spectra.
It includes four convolution modules, four attention modules,
and a classifier based on a fully connected layer (Figure 3a).
Attention is a mechanism to reasonably distribute computing
resources by weighting features. To apply this mechanism to
Raman spectroscopy, we designed channel attention and
wavenumber attention (Figure 3b,c), which can emphasize the
key points and weaken the unimportant features in both
dimensions.

In order to determine the capabilities of this aNN-based
deep learning model to meet the above classification

Figure 3. Construction of the aNN model. (a) aNN structure diagram. aNN includes four convolution modules, four attention modules, and a
classifier based on a fully connected layer. The convolution block consists of a convolution layer, a batch regularization layer, a pooling layer, and an
activation layer. (b) Structural diagram of channel attention. The channel attention first compresses the wavenumber direction information through
the parallel maximum pooling layer and the average pooling layer and then uses the multilayer perceptron (MLP) to filter the features before
adding the parallel compressed information. After activating the sigmoid function, the attention distribution of the channel direction is generated.
(c) Structure diagram of wavenumber attention. Wavenumber attention goes through parallel maximum pooling and average pooling operations.
Different from the channel attention, the compressed information needs to use a convolutional layer with a 1 × 1 kernel to reduce the
dimensionality and then be activated by the sigmoid function to obtain the wavenumber attention distribution.
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requirements, a four-level classification data set of EVs was
introduced, including G+ and G−, species, strains, and
physiological states. The top level contained EVs from two
species of G+ pathogens and four species of G− pathogens. The
second level contained EVs from six different pathogenic
species. The third level contained EVs from one antibiotic-
sensitive strain and two resistant strains of E. coli. (The
resistance genes were located on the plasmid and chromosome
and were resistant to kanamycin and rifampicin, respectively.)
The last level focused on EVs from different physiological
states of the kanamycin-resistant E. coli strain, including the lag
phase, logarithmic phase, and stationary phase. Such a four-
level classification is clinically relevant. In the process of
bacterial infection, pathogens with antibiotic resistance tend to
cause more therapeutic difficulty.35 Moreover, even for the
same bacterial strain, different physiological states such as
growth phases may result in different infection risks. EVs can
be produced during all bacterial growth phases. The function
of EVs is closely related to the contents derived from their
parent bacteria in the context of pathogen infections.36 Subtle
differences in pathogens may lead to great function variation in
their secreted vesicles. Therefore, apart from identifying EVs
from different species, it is also crucial to identify EVs derived
from the same species with different antibiotic resistance as
well as the same strain in different physiological states.
Considering that the spectra produced by bacteria along the
taxonomic level become increasingly similar, it is anticipated to
be more challenging to distinguish the associated EVs.

To perform aNN, the training and testing sets used here
account for about 80 and 20% of all spectra, respectively. The
specific numbers of spectra allocated to the training set and
testing set at different levels are listed in Table S4. To make
sure that the test set was independent of the training data sets,

the testing data set was gathered from independently cultured
samples that did not participate in the training process. As
shown in Figure 4, the aNN model manifested satisfactory EV
classification results, with average accuracies of 96.49 ± 1.56,
96.02 ± 1.12, 93.97 ± 2.02, and 87.06 ± 2.22% at the G+/G−,
species, strain, and physiological levels, respectively. Of note,
the accuracy was more than 95% at the species level, more than
90% at the strain level, and still more than 85% at the
physiological level. This result demonstrates that aNN enabled
the Raman method to pinpoint the origin of EVs to a level far
beyond other methods, such as Gram classification.17 EVs that
merely differ in growth stages still meet a high classification
accuracy, supporting the view that EV components reflect the
physiological state of original bacteria.7,37

To compare the performance of aNN, five other machine
and deep learning models were employed to identify EVs with
the same four-level classification data set, including SVM with
a linear kernel, SVM with a radial basis function (RBF) kernel,
LDA, and CNN and ResNet with architectures similar to that
of Ho.22 The classification results are shown in Table S5. The
accuracy of LDA and SVM was just around 70% at the strain
level and even less than 35% at the physiological level. For
ResNet and CNN, although these two models also achieved
more than 95% accuracy when the classification task was not
very difficult (at Gram and species levels), the aNN model
performed more accurately at the more challenging strain and
physiological levels. Clearly, compared with traditional
algorithms, aNN achieved the best performance in terms of
the accuracy. Apart from the high accuracy, the advantage of
aNN also lies in that it is more portable and efficient. As shown
in Table S6, aNN requires only 17% of the number of
parameters and 6% of the floating point operations (FLOPs)

Figure 4. Discrimination performance of the aNN model at different levels. The horizontal and vertical coordinates of confusion matrices are true
labels and predicted labels, respectively. Diagonal values exhibited the accuracy at (a) G+/G−, (b) species, (c) strain, and (d) down to physiological
levels. *Test sets were from independent experimental results not included in the training sets.
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required by ResNet. Compared with CNN, aNN improves the
performance by using a small amount of computing resources.

Therefore, Raman spectroscopy combined with aNN is a
reliable and efficient method of identifying EVs of bacterial
origins at a high classification level from Gram, species, strains
(antibiotic-resistant or sensitive), and down to physiological
states. It will appear as an advanced identification method for
EVs and will facilitate the application of EVs in infectious
disease diagnosis.
IG-Enabled Uncovering of Distinct Spectral Markers

for Pathogenic EVs. From the above results, deep learning
has enabled the accurate classification of bacterial EVs but
provided no knowledge of what makes the difference. The
underlying Raman spectral features that contribute to EV
discrimination may be of great value as a potential biomarker
of EV.38 However, except for the unique bands of the
carotenoid pigment (1130 and 1525 cm−1) that can directly
identify C. luteola EVs from other EVs (Figure 5a), it is
challenging to decipher the decisive spectral features to
distinguish EVs at the species level.

Here, IG was used to extract the decisive bands of EVs.
Previously, a saliency map has been widely used in the artificial
intelligence-related Raman field. However, a saliency map
cannot solve the problem of gradient saturation, which makes
the gradient independent of the feature important. An
integrated gradient is the evolution of the saliency map.
Using the path integration from the baseline to the input

spectrum can well avoid the above problems and make the
measure of feature importance more accurate.

We use the spectra from species-level data to test the ability
of IG to extract distinct spectral features. As shown in Figure
5b, the order of contribution of Raman peaks to EV
classification is ranked as the gradient distribution. Most of
the gradient distributions were concentrated in the range of
1400−1600 cm−1. Of note, C. joostei EVs displayed strong
gradient signals at 1130 and 1525 cm−1, consistent with our
previous results via direct spectral observations (Figure 5a),
demonstrating the reliability of IG. All of the Raman bands
that contribute most to the identification of one specific EV at
the species level and the corresponding assignments are listed
in Table S7. We found that the primary contributors were
species-dependent. The key spectral markers were present at
around 1413 cm−1 (E. coli), 1168 cm−1 (P. aeruginosa), 1552
cm−1 (E. faecalis), 1130 and 1525 cm−1 (C. joostei), 1024 cm−1

(S. aureus), and 1456 cm−1 (S. enterica), respectively. These
results indicated that the interpretation method enabled the
extraction of spectral markers even from the subtle spectral
differences among EVs. These spectral markers may facilitate
the rapid diagnosis of parental pathogenic bacteria and thus
timely treatment.
Comparison of Raman Features between EVs and

Bacteria. The production of EVs is a conserved process that
carries contents from their parent bacteria. However, there is
still a limited understanding of the content shuttling during EV
biogenesis. Whether cargoes are selectively packaged into EVs

Figure 5. IG uncovers distinct spectral markers of different EVs. (a) Average Raman spectra acquired from six pathogen-derived EVs. (b)
Visualization of the decisive bands of specific EVs based on their Raman spectra. The gradient value, represented as a bar, is an indicator to measure
the importance of the spectral bands. The darker the bar, the larger the gradient value and the larger the contribution of the spectral band to the EV
classification.
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or are merely appendages of EV biogenesis is still under
debate.33,39 In the previous sections, we indicated that Raman
spectra of EVs were obviously separated from the parental
pathogens (Figure 3e). The underpinning biomolecular
composition may confer crucial biological information related
to the specific contents enclosed in EVs and the biogenesis
process.

Here, we compared the Raman spectra from the EVs and
their parental cells after normalization with the highest peak at
2938 cm−1 (C−H stretch of lipids and proteins) (Figure 6a−
f). Most Raman peaks attributed to nucleic acids, proteins, and
lipids showed a relatively lower intensity in EVs than that of
bacteria. For example, the band at 1100 cm−1 (O−P−O
backbone stretch of DNA) detected in E. coli was almost
absent in its EVs (Figure 6a). Moreover, bands at 1003 cm−1

(phenylalanine; Figure 6a), 1307 cm−1 (CH3/CH2 twisting or

bending mode of lipid/collagen; Figure 6b), 1584 cm−1 (ring
breathing of guanine and adenine) showed similar trends
(Figure 6b). Because EVs are just nanometer lipid bilayer
particles with limited encapsulated contents, it becomes
apparent that the relative abundance of these contents in
EVs is less than that in the originating bacteria.

We also found that some Raman peaks with a low relative
intensity in bacteria exhibited a higher relative intensity in EVs.
For example, the relative intensities of 1130 and 1525 cm−1

(carotenoid-like) in C. joostei EVs were higher than those in
the counterpart pathogens (Figure 6c), as were the peaks at
1322 cm−1 (nucleic acids) and 1450 cm−1 (lipid) in E. faecal
EVs (Figure 6e). Moreover, the 1584 cm−1 peak (ring
breathing of guanine and adenine) apparent in all bacterial
spectra decreased and became less obvious in bacterial EVs.
Instead, a neighboring peak at 1600 cm−1 (the C�C in-plane

Figure 6. Comparison of Raman spectral features of six pathogens and their EVs. (a−f) Average Raman spectra of pathogens (blue solid line) and
their EVs (red solid line). (g) Quantitative comparison of the Raman band intensities among different EVs. The results represent the means ± SD.
Different letters (e.g., a and b) were defined as statistically significant (P < 0.05).
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bending mode of phenylalanine) increased and showed up in
all EVs. These results indicated that some biocomponents from
parental bacteria were selectively encapsulated and used to
enrich their EVs. These results are in agreement with our
previous work that some DNA at low concentrations in the
natural environment may be enriched in EVs isolated from the
environment.40 Previous studies using microscopy and a
multiomics approach also showed that there existed the
selective enrichment of specific DNA fragments, miRNA, and
protein in EVs.15,33,41

More interestingly, during the selective packaging process,
different types of EVs were found to use different package
choices. For example, the amide I band at 1664 cm−1 displayed
a similar high intensity in both E. faecal and the EVs (Figure
6f). In contrast, this band detected in E. coli and S. enterica
decreased in their EVs. Likewise, previous work compared the
relative levels of each miRNA in the cell body and EVs and
found that some miRNAs were enriched in EVs from all types
of cells, whereas other miRNAs were enriched only in one or
two types of EVs.15 In addition, we found that the average
spectra of EVs from G+ and G− bacteria were visibly
distinguishable. To semiquantitively illustrate such a variation,
we compared the relative intensity of Raman peaks normalized
by C−H peaks (Figure 6g). It can be found that the bands at
826, 1003, 1205, 1320, 1450, 1600, and 1664 cm−1 in G+

bacteria-derived EVs (G+ EV) were stronger than those of G−

bacteria-derived EVs (G− EV), indicating that the correspond-
ing contents of G+ EVs were more abundant than those of G−

EVs. The reason might be related to the different secretion
modes of EVs from G+ and G− bacteria. The classic production
route of G− EVs is through blebbing from the outer
membrane; therefore, EVs get enriched with outer-membrane
and periplasmic cargoes but do not have direct access to
cytoplasmic compounds.5 By comparison, EVs from G+

bacteria originated from the inner membrane and can therefore
package rich contents from the cytoplasm.24 Together, these
findings indicate that there may be a unique retention and
depletion pattern of EV contents.

Furthermore, a noticeable difference was found in the C−H
vibrational region from 2800 to 3050 cm−1. The C−H bond-
rich membrane lipid showed a prominent contrast between
EVs and their corresponding bacteria. Such changes reflected
the difference in the composition of EVs and bacterial
membranes. As we know, the formation of the EVs’ membrane
structure is by entrapment of the originating cell membrane
contents.42 Nevertheless, carbohydrates and proteins are
randomly distributed on the cell membrane, and the blebbing
region of EV is random, resulting in the variation of the EV
membrane compared to the overall cell membrane. The
progradation of EVs has been previously reported to cause the
outer members’ remodeling,7 supporting our Raman observa-
tion of the difference between EVs and the bacterial outer
membrane. To conclude, multiple biocomponents were found
to be selectively encapsulated by EVs during the biogenesis
process from the rich Raman chemical signatures, and this
encapsulation was bacteria-dependent. Moreover, EVs ex-
hibited different membrane compositions from those of
parental bacteria. Our work provides some clues to the
characteristics of EV biogenesis. These data support the
hypothesis proposed by many review or comment articles.5,7 In
the future, the further coupling with proteomics and
metabolomics will provide a more detailed understanding of
the molecular events involved in the EV biogenesis.43

■ CONCLUSIONS
A novel approach coupling label-free Raman spectroscopy with
a deep learning model of aNN was developed to enable the
rapid and accurate identification of pathogenic bacteria-derived
EVs, a major precursor to the induction of bacterial infectious
diseases. A large Raman data set from EVs derived from six
typical pathogens at different taxonomic and physiological
levels was established to explore the discriminatory power of
the method. By training and testing the aNN using the Raman
spectra of independently extracted and measured EVs samples,
we realized the accurate identification of EVs with high
accuracies at all levels from G+/G− (96.49 ± 1.56%), species
(96.02 ± 1.12%), antibiotic-resistant and sensitive strains
(93.97 ± 2.02%,), and even down to the physiological level
(87.06 ± 2.22%). Clearly, Raman spectroscopy coupled with
aNN achieves a much higher resolution of the bacterial origin
of EVs than previous methods. Moreover, aNN outperformed
five other deep/machine learning algorithms previously used
for bacterial identification by showing higher accuracy and
occupying less computational resources. Furthermore, employ-
ing the interpretation algorithm of IG to extract the decisive
bands from subtly different EV spectra, spectral markers that
contribute to the identification of pathogen-derived EVs at the
species level, was used. Finally, a detailed comparative Raman
feature study of EVs and parental pathogens clearly revealed
the specific biocomponents packaged in EVs during EV
biogenesis and the associated selective encapsulation and
distinct membrane compositions.

The developed deep learning-enabled Raman identification
strategy is easily extendable to EVs secreted by other
pathogenic bacteria. It advances EV identification methods.
However, direct clinical implementation is still challenging
with the current Raman spectrometer, with a spatial resolution
that is not high enough for individual EV at the nanoscale.
Clinical samples often contain a blend of EVs of different
origins including bacteria, human cells, and tissues. The
discrimination of the origin of EVs and the characterization of
their abundance are required by clinical diagnosis. Recently, a
single-particle automated Raman trapping system capable of
capturing and analyzing individual nanosized EVs has been
reported.44 Together with the deep learning-enabled Raman
identification strategy developed here, they will promote early
EV-based infectious disease diagnosis and the timely treatment
of bacterial infections.
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