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• Inter-annual variability was stronger than
seasonality in ciliate communities.

• Ciliate community structurewas impacted
by cyanobacterial blooms.

• Ciliate community assembly was mainly
controlled by stochastic processes.

• Cyanobacterial bloom increased selection
pressure on ciliate community.

• Environment affected directly, but
cyanobacteria indirectly shaped the ciliate
community.
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It is well-established that environmental variability and cyanobacterial blooms havemajor effects on the assembly and
functioning of bacterial communities in both marine and freshwater habitats. It remains unclear, however, how the
ciliate community responds to such changes over the long-term, particularly in subtropical lake and reservoir ecosys-
tems.We analysed 9-year planktonic ciliate data series from the surfacewater of two subtropical reservoirs to elucidate
the role of cyanobacterial bloom and environmental variabilities on the ciliate temporal dynamics. We identified five
distinct periods of cyanobacterial succession in both reservoirs. Using multiple time-scale analyses, we found that the
interannual variability of ciliate communities was more strongly related to cyanobacterial blooms than to other envi-
ronmental variables or to seasonality. Moreover, the percentage of species turnover across cyanobacterial bloom and
non-bloom periods increased significantly with time over the 9-year period. Phylogenetic analyses further indicated
that 84 %–86 % of ciliate community turnover was governed by stochastic dispersal limitation or undominated pro-
cesses, suggesting that the ciliate communities in subtropical reservoirs were mainly controlled by neutral processes.
However, short-term blooms increased the selection pressure and drove 30%–53% of the ciliate community turnover.
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We found that the ciliate community composition was influenced by environmental conditions with nutrients,
cyanobacterial biomass and microzooplankton having direct and/or indirect significant effects on the ciliate taxo-
nomic or functional community dynamics. Our results provide new insights into the long-term temporal dynamics
of planktonic ciliate communities under cyanobacterial bloom disturbance.
1. Introduction

Cyanobacterial blooms are a recurring phenomenon in many aquatic
environments worldwide, reflecting high human-induced nutrient loading
(Plass and Paerl, 2021; Wang et al., 2020a; Huisman et al., 2018). Some
cyanobacterial species produce cyanotoxins, which can negatively impact
a wide range of co-occurring species and reduce water quality (Tan et al.,
2021; Liu et al., 2019; Xue et al., 2018; Rabalais et al., 2010). They also
have indirect negative impacts on aquatic organisms, for example, by de-
creasing light penetration during blooms and by causing oxygen depletion
(Plass and Paerl, 2021; Huisman et al., 2018; Rabalais et al., 2010). Thus,
cyanobacterial blooms can significantly decrease aquatic ecosystem func-
tions and services (Tan et al., 2021; Wang et al., 2020b). Different plank-
tonic organisms may respond differently to cyanobacterial bloom-induced
environmental and ecological changes (Kosiba and Krzton, 2022;
Tirjakova et al., 2016). For example, zooplanktonmay become food limited
(Napiorkowska-Krzebietke et al., 2021; Kosiba et al., 2018; Moustaka-
Gouni et al., 2006), while some heterotrophic bacteria can benefit from
cyanobacterial blooms (Shao et al., 2014; Ploug et al., 2011). Further,
some microeukaryotes (protists and zooplankton) may play key functional
roles in the processing of cyanobacterial blooms (Gao et al., 2022; Liu et al.,
2019; Xue et al., 2018) and specific communities are strongly correlated
with cyanobacterial blooms (Napiorkowska-Krzebietke et al., 2021; Liu
et al., 2019; Kosiba et al., 2018). Of these microeukaryotes, ciliates perhaps
exhibit the widest variety of ecological strategies, from free-living to symbi-
onts, and they have a wide range of optimal prey types (Canals et al., 2020;
Simek et al., 2019; Adl et al., 2019; Agatha, 2011). They are, therefore, a
relevant group to focus on in relation to cyanobacterial blooms.

Despite comprehensive evidence that ciliates are inherently integrated
and may control bottom-up interactions in the aquatic food webs
(Scheuerl and Kaitala, 2021; Ger et al., 2016, 2019; Boyer et al., 2011)
and predate on bacteria, cyanobacteria, microalgae and nano-flagellates
(Meira et al., 2021; Weisse, 2017; Wang et al., 2017), their community
compositional and functional responses to cyanobacterial bloom-induced
environmental and ecological changes have only recently been addressed
(Weisse and Montagnes, 2022; Qu et al., 2021; Haraguchi et al., 2018;
Andrushchyshyn et al., 2006). It is known that a short-term cyanobacterial
bloom increases the environmental selection and decreases the
stochasticity of bacterioplankton (Wang et al., 2020a; Woodhouse et al.,
2016). However, we do not know to what extent interannual variability in
environmental conditions and recurring short to long-term cyanobacterial
blooms alters the relative importance of stochastic and deterministic
processes for ciliate community composition. Recent work has shown that
taxonomic and functional turnover in ecological communities have great
significance to elucidate community changes in heterogeneous environments
(Graco-Roza et al., 2022), such as pollution and biological disturbances
(i.e., algal bloom and invasion).

Time-series data are valuable for disentangling how stochastic and de-
terministic processes drive the compositional changes of ciliate communi-
ties. For example, short-term studies have provided evidence of seasonal
recurrence and succession of ciliates (Pitsch et al., 2019; Sommer et al.,
2012), while only weak patterns of community changes appeared in reac-
tion to disturbance events (i.e., algal bloom) (Martin-Platero et al., 2018;
Simon et al., 2015; Mueller et al., 1991). Time series-based sampling has
shown that, although the abundance of given species may fluctuate sub-
stantially, the plankton communities change according to environmental
fluctuations (Martin-Platero et al., 2018). The community composition of
plankton and ecological factors determining their community structure are
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known (Lima-Mendez et al., 2015), while there is no clear evidence for
how interannual ciliate community changes in relation to cyanobacterial
blooms.

In this study, we analysed a 9-year time series of data (2010–2018) col-
lected from subtropical Shidou and Bantou reservoirs in Xiamen, southeast
China (Fig. S1) to elucidate the planktonic ciliate community dynamics and
its responses to short- to long-term dominance of cyanobacteria along with
reservoir multi-annual environmental variability. We aimed to investigate:
(1) the variability of planktonic ciliate communities in subtropical reser-
voirs over the 9-year period; (2) how the ciliate taxonomic and functional
communities change with time-related changes in cyanobacterial blooms,
and (3) how the intensity of cyanobacterial blooms changes the relative
importance of deterministic and stochastic processes in shaping ciliate
community dynamics.

2. Materials and methods

2.1. Study area

The sampling sites were located in two reservoirs, Shidou Reservoir and
Bantou Reservoir in Xiamen, subtropical China (Liu et al., 2019; Yang et al.,
2017). Xiamen has a subtropical monsoon climate, characterized by long,
humid and hot summers and short, dry, and mild winters (Fig. S1). The an-
nual mean temperature is 20.7 °C, and the annual mean precipitation is
1335.8 mm (Xiamen meteorological department). Shidou Reservoir is a
large drinking water reservoir, having a total water storage capacity of
61.4 million m3 with a mean water depth of 13.9 m (25.8 m maximum
depth), while Bantou Reservoir is a smaller and shallower reservoir, having
a total water storage capacity of 4.4 million m3 with a mean water depth of
7.2 m (12.4 m maximum depth) (Yang et al., 2017). The Bantou Reservoir
is located downstreamof the Shidou Reservoir, andwaterflows into Bantou
Reservoir through an openable switch gate when the water level is high
enough in the Shidou Reservoir (generally in the rainy season). The hydro-
logical conditions in the reservoirs are tightly linked to the surrounding
forested landscape and periodic rainfall events (Liu et al., 2019; Yang
et al., 2017). Rainfall changes the water levels, temperature, pH and
dissolved oxygen concentrations, and the dissolved nutrient levels may
rise several times higher than the normal state (Shabarova et al., 2021;
Yang et al., 2017).

2.2. Water sample collection

Water samples (20 L) were collected from the surface waters (0.5 m
depth, near the inflow, near the outflow, and the middle of reservoir) in
each reservoir using water sampler (5 L polycarbonate bottle). Only surface
water was sampled becausewe focus on the effects of cyanobacteria blooms
that typically occur here. In total, 252 samples (126 samples from each res-
ervoir with three replicates) were collected monthly from May 2010 to
April 2011 (36 samples from each reservoir, a total of 72 samples) and in
each season (spring, summer, autumn and winter from 2011 to 2018, 90
samples from each reservoir, a total of 180 samples) over the 9-year period.
The water samples were pre-filtered through a 200 μm sieve to remove
large particles/debris and macro- to mesoplankton. After that, plankton
were filtered using 0.2 μm pore-size polycarbonate membrane (47 mm
diameter, Millipore, Billerica, MA, USA) from 500 to 1000 mL of water
following our previous study (Liu et al., 2019). The filtered membranes
were immediately stored at −80 °C.
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2.3. DNA extraction, PCR amplification and bioinformatics

The planktonic DNA was extracted directly from the membrane using
FastDNA SPIN Kit and the Instrument (MP Biomedicals, Solon, OH, USA)
according to the manufacturer's instructions. The hypervariable V9 region
of the microeukaryotic 18S rRNA gene was amplified using the universal
primer pair 1380F and 1510R (Amaral-Zettler et al., 2009) with attached
Illumina (San Diego, CA, USA) adapters. Amplification of each sample
was performed in triplicate reactions using 15 μL of Phusion HighFidelity
PCR Master Mix (New England Biolabs, Beverly, MA, USA) with 0.4 μM
of primers (0.2 μMof each primer) and 10 ng of target DNA. The amplifica-
tion conditions included an initial denaturation at 98 °C for 1min, followed
by 30 cycles of 10 s at 98 °C, 30 s at 50 °C and 60 s at 72 °C. At the end of the
amplification, the amplicons were subjected to final 10 min extension at
72 °C. PCR products from triplicate reactions per sample were pooled and
gel purified. The purified PCR products were pooled in equal quantity
and then paired-end sequenced (2 × 150 bp) on an Illumina HiSeq
platform (Illumina Inc., San Diego, CA, USA) (Liu et al., 2017).

The raw sequence data were assembled using Mothur v.1.39.5 (Schloss
et al., 2009) and further processedwithUsearch v.10 (Edgar, 2010). Single-
tons and chimeras were discarded using default settings in the Usearch
(with cluster algorithm). Quality-filtered reads were assigned to zero-
radius OTUs at a 97% sequence similarity threshold, and representative se-
quences from eachOTUwere identified by the Protist Ribosomal Reference
(PR2) database using RDP Naive Bayesian Classifier (Guillou et al., 2013).
Unassigned (sequence similarity to a reference sequence was <80 %)
OTUs were removed before the downstream analyses. We found 12,428
microeukaryotic OTUs (8.2 % OTUs and 5.6 % sequences of ciliate in
Shidou, whereas 7.7 %OTUs and 6.1 % sequences in Bantou) after normal-
ization (29,062 reads/sample).We normalized the ciliate sequence number
to 999 for each of 252 samples. Of these, 685 and 674 OTUs were retrieved
in Shidou and Bantou reservoirs, respectively (Fig. S2).

2.4. Physicochemical and nutrient variables

Water transparency (Trans) was measured with a Secchi disk. Water
temperature (WT), electrical conductivity (EC), pH and dissolved oxygen
(DO) were measured in situ using a Hydrolab DS5 multi-parameter water
quality analyzer (Hach, Loveland, CO, USA). Total nitrogen (TN), ammo-
nium nitrogen (NH4-N), nitrite and nitrate nitrogen (NOx-N), phosphate
phosphorus (PO4-P) and total phosphorus (TP) were analysed according
to standard methods (Greenberg et al., 1992).

2.5. Phytoplankton analysis

A total of 2.5 L of water was obtained from each sample and fixed in situ
with 1.5 % Lugol's iodine solution (Yang et al., 2017). To enumerate phyto-
plankton, 50mL subsamples of the Lugol'sfixed samples were concentrated
according to Zhang and Huang (1991). For each sample at least 500 phyto-
plankton individuals were identified and counted using an inverted micro-
scope (Motic A-31, Xiamen, China) following taxonomic references
(Hu andWei, 2006; Zhang and Huang, 1991; Shen et al., 1990). The abun-
dance of each phytoplankton species was first transformed to biovolume
and then to biomass following Hillebrand et al. (1999).

2.6. Cyanobacterial blooms

A cyanobacterial bloom was considered when the biovolume exceeded
a threshold value of 10 mm3/L according to the Water Quality Research
Australia framework (Woodhouse et al., 2016).

In this study, Raphidiopsis raciborskii showed massive cyanobacterial
blooms in Shidou and Bantou reservoirs (Tan et al., 2021). A particularly
long-term continuous bloom occurred from May 2010 to April 2011 (BP1:
bloom period 1) in both reservoirs. The intensity of other cyanobacterial
blooms differed between the two reservoirs. The reservoir-specific bloom
periods were winter 2014, from spring to winter 2015 (BP2: bloom period
3

2) and from spring to autumn 2018 (BP3: bloom period 3) in Shidou Reser-
voir. Frequent cyanobacterial blooms were observed in Bantou Reservoir,
particularly in autumn 2014, summer 2015 and autumn 2015 (BP2:
bloom period 2) and autumn 2018 (BP3: bloom period 3).

2.7. Functional attributes of ciliates

The feeding categories (proxies for ecological role) of ciliates were
assigned to the OTUs (or species) (Majaneva et al., 2022; Adl et al., 2019;
Shen et al., 1990; Lynn, 2008; Foissner and Beger, 1996). The categories
were based on Adl et al. (2019) and included algivorous (A), bacterivorous
(B), commensal-bacterivorous (B*), parasitic-histophagous-bacterivorous
(BP*), cytotrophic (C), fungi, cyanobacteria and filamentous-algae feeding
(F), omnivorous (O), osmotrophic (OC), predatory/raptorial (R), saprotrophic
(S) and parasitic (X) species as well as species with unknown functions.

2.8. Data analyses

Canonical analysis of principal coordinate followed by discriminant
analysis based on Bray-Curtis dissimilarity of the ciliate community compo-
sition was conducted with 9999 permutations in PRIMER v.7.0.21 (Clarke
and Gorley, 2015; Anderson et al., 2008). In the analysis, the program
determined the appropriate number of dimensions (m) with the lowest
misclassification error (%) to be included in the principal coordinate and
discriminant analysis. The significant differences between samples were
tested by analysis of similarity (ANOSIM) with 999 permutations using
the PRIMER. To investigate the percentage of variation in ciliate commu-
nity composition between andwithin periods, a permutationalmultivariate
analysis of variance (PERMANOVA) with Monte Carlo simulation (9999
permutations) was performed using Bray-Curtis dissimilarity of the relative
abundance of OTUs in PRIMER 7.0.21 + PERMANOVA (Clarke and
Gorley, 2015; Anderson et al., 2008).

Beta-diversity (Bray-Curtis dissimilarity) was partitioned into two com-
ponents, the abundance gradient (richness) and the balanced variation
(turnover) using the “bray.part” function of the “betapart” R package
(Baselga et al., 2022) to reveal temporal patterns of the ciliate taxonomic
and functional communities, respectively. Further, a time-lag regression
analysis (Collins et al., 2000) was used to quantify the contributions of turn-
over dissimilarity components, functional composition and richness varia-
tion over time.

To understand the mechanisms underlying the ciliate community
assembly and the contributions of deterministic and stochastic processes,
the phylogenetic bins-based null-model (NM) (Stegen et al., 2012) and
Sloan neutral community model (NCM) were used (Sloan et al., 2006).
These analyses were conducted in R packages “iCAMPˮ, “Hmiscˮ,
“minpack.lmˮ and “stats4ˮ (R Core Team, 2020). Applying the NCM
approach, the contributions of neutral processes can generate the best fit
distribution curve (with least-squares method), which predicts the relation-
ship between the occurrence frequency of the individual OTUs and their
mean relative abundance in the metacommunity (Sloan et al., 2006).
Random immigration, births and deaths are assumed to determine the
relative abundance of OTUs in a metacommunity. The N in the NCM
model describes the metacommunity size, andm estimates the immigration
rate that can be interpreted as a measure of dispersal limitation (Zhou and
Ning, 2017; Sloan et al., 2006).

The null model approach uses phylogenetic trees to estimate the process
of each pairwise turnover for randomized OTUs (Stegen et al., 2012). The
phylogenetic signal occurs when more closely related OTUs are more eco-
logically similar and quantitatively estimates the percentage of composi-
tional turnover linked to deterministic and stochastic processes (Zhou and
Ning, 2017; Stegen et al., 2012). A phylogenetic tree of ciliates was
constructed in Qiime2 (Bolyen et al., 2019). The pairwise phylogenetic
turnover between communities was calculated as the mean nearest taxon
distance metric (βMNTD). The β-nearest taxon index (βNTI) is the differ-
ence between observed βMNTD and the mean of the null distribution of
βMNTD normalized with its standard deviation. Four major ecological
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processeswere quantified: (1) βNTI value>2 and<−2 indicated that com-
munities were driven by heterogeneous selection and homogeneous selec-
tion, respectively; (2) the relative contribution of dispersal limitation was
calculated as the percentage of pairwise comparisons with |βNTI| < 2 and
RCbray > 0.95; (3) the relative contribution of homogenizing dispersal
was assessed as the percentage of pairwise comparisons with |βNTI| < 2
and RCbray < −0.95; and (4) the ecological drift (undominated fraction)
was calculated as the percentage of pairwise comparisons with |βNTI| < 2
and |RCbray| < 0.95 (Isabwe et al., 2022).

Random Forest (RF) analysis was used to explore significant predictors
for long-term ciliate community dynamics and across cyanobacterial bloom
and non-bloom periods, respectively. This analysis was conducted in the
“randomForestˮ and “rfPermuteˮ packages in R (Archer, 2022; Liaw and
Wiener, 2002). The number of trees was 5000 within 9999 permutations.
A high percentage of mean sum square (%IncMES) of a given predictor
indicates high contribution of that predictor to the community dynamics.
Further, to investigate the grazing impacts on ciliate community dynamics,
the relative abundances (sequences) of four microzooplankton groups
(Branchiopoda, Gastrotricha, Maxillopoda and Rotifera) were included in
the RF analysis. Their abundances were incorporated from normalized
total 18S rRNA gene sequence data. Moreover, the relative importance
of physicochemical variables, cyanobacterial biomass, nutrients and
microzooplankton were partitioned by variation partitioning analysis
(VPA) using the “veganˮ and “fmsbˮ packages in R (Nakazawa, 2022;
Oksanen et al., 2020). Finally, the direct and indirect effects of biotic
(cyanobacteria and microzooplankton) and abiotic environmental condi-
tions (physicochemical and nutrients) on ciliate community dynamics
were assessed by partial least square path model (PLS-PM) using the
“plspmˮ package in R (Sanchez, 2013). Environmental data were log
(x + 1) transformed, with the exception of pH, and normalized before
analysis (Clarke and Gorley, 2015; Anderson et al., 2008).

3. Results

3.1. Temporal dynamics of cyanobacterial blooms

Time series analysis revealed five distinct cyanobacterial periods and
each period was distinct in term of cyanobacterial biomass (P < 0.05).
The mean cyanobacterial biomass of these five periods was recorded as
1739.60mg/L, 0.66mg/L, 42. 30mg/L, 0.88mg/L and 26.56mg/L during
BP1, NBP1, BP2, NBP2 and BP3, respectively, in Shidou Reservoir,
while it was 58.45 mg/L, 1.22 mg/L, 32.70 mg/L, 1.44 mg/L and
22.40 mg/L, respectively, in Bantou Reservoir (Fig. 1a). The contribution
of cyanobacterial biomass to total phytoplankton biomass was 99 %, 6.4
%, 86.7 %, 13.8 % and 87.5 % during BP1, NBP1, BP2, NBP2 and BP3 in
Shidou Reservoir, and 85.1 %, 14.1 %, 77.3 %, 24.2 % and 86.6 % in
Bantou Reservoir, respectively. In the smaller reservoir (Bantou), the
same periods were observed with the exception that the second bloom pe-
riodwas not continuous but interrupted for a short time by a cyanobacterial
biovolume given a threshold value of 10 mm3/L. In addition, a short-term
bloom was observed in Bantou Reservoir in autumn 2012 within the first
non-bloom period (Fig. 1a).

3.2. Temporal dynamics of ciliate community

The planktonic ciliate community composition exhibited a stronger
response to cyanobacterial blooms than seasonality in both reservoirs
revealed by ANOSIM (Table 1) and CAP analyses (Fig. S3a, b). The permu-
tational multivariate analysis of variance (PERMANOVA) and following
pairwise comparisons among the periods revealed that the greater differ-
ences occurred between BP1 (bloom period 1) and BP3, BP1 and NBP2
(non-bloom period 2), BP2 and BP3, NBP1 and BP3 as well as between
NBP1 and NBP2, showing 64.9%, 61.6%, 62.0%, 62.7% and 57.7% com-
munity compositional variation in Shidou Reservoir, and 59.1 %, 57.9 %,
57.0 %, 57.8 % and 55.7 % variation in Bantou Reservoir, respectively
(Table 2). Among the ciliate communities, Colpodea (47 OTUs),
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Heterotrichea (22 OTUs), Litostomatea (184 OTUs), Oligohymenophorea
(143 OTUs), Plagiopylea (13 OTUs), Prostomatea (52 OTUs) and
Spirotrichea (211 OTUs) were dominant over the 9-year study period and
exhibited marked interannual variability in terms of relative abundance
and function (Fig. 1b, c). Therefore, our 9-year time series analysis revealed
that the community composition and richness of planktonic ciliates under-
went pronounced changes following interannual pattern corresponding to
cyanobacterial succession and that this pattern was overall stronger than
the seasonal pattern.

The changes in OTU richness and Shannon-Wiener diversity were
strongly related to the cyanobacterial succession than the seasonality in
Shidou Reservoir, while seasonality was found to be stronger for OTU rich-
ness in Bantou Reservoir (Fig. 2). Further, time-related changes in taxo-
nomic beta-diversity accounted for 83.8 % and 87.8 % of the total
variability in ciliate community composition in Shidou and Bantou reser-
voirs, respectively, and 82.4 % and 67.3 % of the functional variability,
respectively (Fig. 3a, c). Time accounted for 23.9 % of the variation in
OTU richness in Shidou Reservoir and for 14.6 % in Bantou Reservoir
(Fig. 3a, c), indicating that large-scale species turnover/replacements oc-
curred over the 9-year period. The time related changes of environmental
factors, cyanobacterial biomass and microzooplankton abundance were
4.5 %, 2.7 % and 0.3 % in Shidou Reservoir, and 5.4 %, 0.4 % and 6.6 %
in Bantou Reservoir, respectively (Fig. 3b, d), suggesting that water ecolog-
ical conditions have significant influence on directional change of the
ciliate community composition and richness in both reservoirs.

3.3. The ciliate community assembly

The relationship between distribution and the relative abundance of
planktonic ciliate OTUs was well fitted to the Sloan neutral community
model (Fig. 4a, b), indicating that ciliate community assembly was mainly
driven by neutral processes. The NCMmodel explained 81.6 % and 80.3 %
of the overall community variation of planktonic ciliates in Shidou and
Bantou reservoirs, respectively. Further, the NCMmodel roughly explained
76.4 % and 78.5% of ciliate community variations for bloom samples from
Shidou and Bantou reservoirs, respectively, and 80.6% and 78.9% for non-
bloom samples, respectively (Fig. 4a). Themetacommunity size (Nm) deter-
mined by dispersal/or drift was found to be higher in non-bloom than in
bloom periods in Shidou Reservoir (Nm = 110 for bloom and 127 for
non-bloom), but higher for the bloom periods than non-bloom periods in
Bantou Reservoir (Nm= 138 for bloom and 108 for non-bloom) (Fig. 4a).

The percentage of turnover in the ciliate community assembly was
governed primarily by stochastic processes (dispersal limitation:
63.8 %, undominated: 19.1 %, homogenizing dispersal: 1.2 %, total
stochastic contribution: 84.1 %), while a small portion was explained
by deterministic processes (homogeneous selection: 10.8 % and hetero-
geneous selection: 5.1 %, total deterministic contribution: 15.9 %) in
Shidou Reservoir (Fig. 4c). Accordingly, dispersal limitation (65.8 %),
undominated processes (19.3 %), homogenizing dispersal (1.1 %),
homogeneous selection (8.8 %) and heterogeneous selection (5 %)
(total stochastic contribution was 86.2 % and total deterministic pro-
cesses contribution was only 13.8 %) drove ciliate community assembly
in Bantou Reservoir (Fig. 4c). When considering bloom and non-bloom
periods, 81.3 % and 85.6 %, respectively, of turnover in ciliate commu-
nity assembly was explained by stochastic processes (i.e., dispersal lim-
itation, homogenizing dispersal and undominated processes), while
18.7 % and 14.4 % of variation explained by deterministic processes
(i.e., homogeneous selection and heterogeneous selection processes)
in Shidou Reservoir, respectively (Fig. 4c). In Bantou, the stochastic pro-
cesses explained 84.0 % and 85.9 %, whereas deterministic processes
explained 16.0 % and 14.1 % of ciliate community turnover in bloom
and non-bloom periods, respectively (Fig. 4c).

The influence of the stochastic and deterministic processes on ciliate
community assembly showed different patterns with respect to the strong
and weak cyanobacterial bloom periods (Fig. 4b). The NCM model
accounted for 79.0 %, 89.3 %, 81.8 %, 75.1 % and 61.6 % of community



Fig. 1. Nine-year dynamics of cyanobacterial biomass (a), ciliate taxonomic composition (b) and functional composition (c) in two subtropical reservoirs.
Ciliate functional groups: A, algivorous; B, bacterivorous; B*, commensals-bacterivorous, PB*, histophagous-bacterivorous; C, cytotrophic; F, fungi, cyanobacteria and
filamentous-algae feeders; O, Omnivores; OC, osmotrophic; R, predators/raptors; S, saprotrophs; Un, unknown function; and X, parasitic. Note that Cyanophyta biomass
was ln (x+1) transformed in Fig. 1a.
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variations for BP1, NBP1, BP2, NBP2 and BP3, respectively, in Shidou
Reservoir, whereas the model accounted for 76.8 %, 88.9 %, 47.6 %,
78.2% and 61.1% community variations, respectively, in Bantou Reservoir
(Fig. 4b). Our results thus revealed stronger stochastic than deterministic
Table 1
Summary of the ANOSIM and PERMANOVA (Adonis) results of ciliate taxonomic
composition in Shidou and Bantou reservoirs, respectively.

Group ANOSIM global R PERMANOVA pseudo-F

Shidou Bantou Shidou Bantou

Season (4 seasons) 0.191** 0.164** 5.102** 3.415**
Year (9 years) 0.527** 0.557** 7.853** 7.441**
Inter-annual (5 periods) 0.534** 0.472** 9.052** 7.822**
Bloom vs non-bloom 0.190** 0.124** 6.389** 5.995**

Global R represents degree of separation between groups (**P < 0.01).
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processes in shaping the ciliate community assembly in both reservoirs,
but a higher degree of deterministic influence was found during weak
bloom period (i.e., BP3) in both reservoirs (Fig. 4c). The contribution of
deterministic processes was 5.7 %, 4.0 %, 10.5 %, 25.7 % and 52.8 % for
BP1, NBP1, BP2, NBP2 and BP3, respectively, in Shidou Reservoir, whereas
it was 18.6 %, 6.7 %, 13.6 %, 23.0 % and 30.0 %, respectively, in Bantou
Reservoir (Fig. 4c), indicating an increased selection pressure during
weak bloom period in 2018.

3.4. The factors responsible for ciliate community dynamics

The interannual variability in environmental variables was more pro-
nounced than seasonal variation in both reservoirs (ANOSIM; interannual
variability: R = 0.306, P < 0.01 and R = 0.331, P < 0.01 in Shidou and
Bantou, respectively, and seasonal variability: R = 0.232, P < 0.01 and R
=0.226, P < 0.01 in Shidou and Bantou, respectively). For both reservoirs,



Table 2
The pairwise comparison of the ciliate taxonomic composition in Shidou and
Bantou reservoirs, respectively.

Group ANOSIM global R PERMANOVA dissimilarity
(%)

Shidou Bantou Shidou Bantou

BP1 vs NBP1 0.480** 0.279** 53.404** 49.105**
BP1 vs BP2 0.323** 0.191* 52.900** 49.015**
BP1 vs NBP2 0.564** 0.476** 61.552** 57.868**
BP1 vs BP3 0.841** 0.773** 64.870** 59.107**
NBP1 vs BP2 0.431** 0.525** 52.014** 51.203**
NBP1 vs NBP2 0.607** 0.593** 57.722** 55.696**
NBP1 vs BP3 0.866** 0.896** 62.681** 57.768**
BP2 vs NBP2 0.258** 0.345** 56.935** 56.483**
BP2 vs BP3 0.723** 0.934** 62.044** 56.960**
NBP2 vs BP3 0.062 −0.048 55.079** 50.545

Global R represents degree of separation between groups (*P < 0.05 and
**P < 0.01). Five periods were identified: BP1 indicates the first bloom period
(21 samples in Shidou and 21 samples in Bantou during 2010–2011); NBP1 indi-
cates the first non-bloom period (54 samples in Shidou and 51 samples in Bantou
during 2011 to 2014); BP2 indicates the second bloomperiod (15 samples in Shidou
and 12 samples in Bantou during 2014–2015); NBP2 indicates the second non-
bloom period (27 samples in Shidou and 37 samples in Bantou during
2016–2018); and BP3 indicates the third bloom period (9 samples in Shidou and
5 samples in Bantou during 2018).
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random forest (RF) prediction analyses revealed that the most important
predictive variables for planktonic ciliate community dynamics were
water temperature, transparency, pH, dissolved oxygen, ORP, total nitro-
gen, NOx-N, total phosphorus, PO4-P and cyanobacterial biomass
(Table S1). Electrical conductivity, Branchiopoda (including cladocerans)
and Maxillopoda (including planktonic copepods) were important predic-
tors in Shidou Reservoir, while NH4-N, Gastrotricha and Rotifera were
important predictors in Bantou Reservoir (Table S1).

We found the physicochemical variables, nutrients, cyanobacterial bio-
mass and microzooplankton abundance had a significant relationship with
the taxonomical and functional beta-diversity of planktonic ciliate commu-
nities (Fig. S5). Further, the variance partitioning analysis (VPA) showed
Fig. 2. Temporal dynamics of OTU richness (a) and Shannon-Wiener diversity (b) of cil
the four seasons in Shidou and Bantou reservoirs, respectively.
Sum, summer; Aut, autumn; Win, winter; Spr, spring. R2 indicates coefficient of determi
period 1; NBP1, non-bloom period 1; BP2, bloom period 2; NBP2, non-bloom period 2;
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that 38 % and 34 % of the community variation could be explained by
these predictive variables in Shidou and Bantou reservoirs, respectively
(Fig. 5a). The individual effect of the physicochemical variables,
cyanobacterial biomass, nutrients and microzooplankton abundance
accounted for 13 %, 12 %, 5 % and 1 % in Shidou Reservoir, and 7 %,
10 %, 5 % and 2 % in Bantou Reservoir, respectively (Fig. 5a). Furthermore,
PLS-PM analysis showed that physicochemical variables and nutrients had
significant direct effects, while cyanobacterial biomass andmicrozooplankton
had indirect effects on the ciliate communities in ShidouReservoir (Fig. 5b). In
BantouReservoir, physicochemical variables, nutrients andmicrozooplankton
had significant direct effects,while cyanobacterial biomass had indirect effects
on ciliate community dynamics (Fig. 5b). Placing all our results in a conceptual
framework, changes in water ecological conditions promoting cyanobacterial
blooms in the reservoirs led to enhanced dispersal and environmental selec-
tion of planktonic ciliate communities, showing increased cyanobacterial
bloom-dependency of ciliate communities and lower diversity of ciliate during
bloom periods than non-bloom periods in these subtropical reservoirs.

4. Discussion

4.1. Ciliate community changes from the bloom to non-bloom periods

We found that the relative abundance of the taxa Colpodea,
Heterotricha, Oligohymenophorea and Spriotricha peaked during the
bloom period 1 when cyanobacterial biomass was remarkably high
(1740 mg/L and 58 mg/L in Shidou and Bantou, respectively), while
Litostomatea peaked during the bloom period 3 when cyanobacterial
biomass was relatively lower than bloom period 1 (26.6 mg/L and
22.4 mg/L in Shidou and Bantou, respectively), and Prostomatea domi-
nated during bloom period 2 when cyanobacterial biomass was
42.3 mg/L and 32.7 mg/L in in Shidou and Bantou, respectively (Figs. 1b
& S4a). In comparison a study in shallow hypertrophic reservoir in
Slovakia, Central Europe (Tirjakova et al., 2016), and eutrophic lakes in
China (Li et al., 2016), they have shown that only few common taxa
flourished and dominated during the bloom periods. Furthermore, our
results showed that three bloom periods were dominated by different func-
tional groups, such as algivorous, bacterivores (including commensals and
iate communities corresponding to the cyanobacterial bloom succession and among

nation, and star marks indicate significant level at 0.05* and 0.001***. BP1, bloom
BP3, bloom period 3.



Fig. 3. Time-lag regression analysis of ciliate taxonomic composition, functional composition, richness, environmental factors (physicochemical and nutrients),
cyanobacterial biomass and microzooplankton abundance over the nine-year period in Shidou (a, b) and Bantou reservoirs (c, d), respectively.
Blue lines indicate the fitted model and red lines the 95 % confident intervals of the fitted model. Adjusted R square (R2) indicates the strength of the model fit. Taxonomy,
taxonomic composition; Function, functional composition; Richness, ciliate OTU richness; Environmental, environmental factors (physicochemical and nutrients); Cyano-
biomass, cyanobacterial biomass; MicroZoo, relative abundance of microzooplankton.
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parasitic-histophagous), omnivores and predators being higher in first
bloom period (BP1), while both algivorous and saprotrophs in the second
bloom period (BP2), and the third bloom period (BP3) was dominated by
algivorous, cytotrophic, and saprotroph ciliates (Figs. 1c& S4b). The differ-
ent responses of ciliate functional feeding groupsmight reflect variations in
resources (i.e., quality and quantity of food, shape and size of the prey)
(Meira et al., 2021; Weisse, 2017; Li et al., 2016), as we found relationship
between planktonic ciliate feeding groups and cyanobacterial biomass, sug-
gesting that food items contributed to structuring ciliate functional groups.

4.2. Marked interannual variability of ciliate community

Previous studies of ciliate diversity patterns have mainly covered short-
term periods (i.e., 1 or 2 years) across specific environmental gradients
(Canals et al., 2020; Sommer et al., 2012; Agatha, 2011; Tirok and
7

Gaedke, 2006), while long-term (i.e., decadal scale) studies are very rare.
Our 9-year time series data analyses did not reveal a clear repeatable
seasonal pattern in the ciliate community composition in the two studied
reservoirs, but we found a strong cyanobacterial bloom dependent interan-
nual dynamic pattern (Tables 1 & 2). This finding is different from previ-
ously studied ciliate and protistan communities (Pitsch et al., 2019;
Simon et al., 2015), and likely reflect a strong influence of the
cyanobacterial bloom on ciliate community and diversity (Fig. 2). The spe-
cies turnover showed strong directional changes and the community
dissimilarity between samples increased significantly with time (Fig. 3),
implying an action of internal or external forces driving the community suc-
cession from its original position over time. Others have found that species
turnover plays an important role in the community dynamics of eukaryotic
plankton, particularly during bloom-induced disturbances (Xue et al., 2018;
Kampichler and van der Jeugd, 2013; Soininen, 2010). Another possible



Fig. 4.The contribution of stochastic and deterministic processes on community assembly of ciliate communities. Fit of the neutralmodel of ciliate community assembly (a, b), and
the relative importance of different processes on community assembly across cyanobacterial bloom successions in Shidou and Bantou reservoirs (c), respectively.
The bars with standard deviation represent results from the fitted neutral model and the dotted lines represent the metacommunity size (a, b). The numbers in the bar plots
represent the percentage of different portions of stochastic and deterministic processes on community assembly and number is shown >3 % (i.e., >3 %) to avoid complexity (c).
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reason for the strong interannual variability, supported by phylogenetic
turnover, is higher dispersal ability and drift (Novotny et al., 2021; Canals
et al., 2020). In general, higher dispersal ability and drift allow the micro-
bial communities to have a higher probability of colonizing suitable habi-
tats (Canals et al., 2020; Stegen et al., 2012; Sloan et al., 2006), reducing
the variation of community composition. Consistently, the community
compositions in the three cyanobacterial bloom periods were rather similar
and distinct from those of the two non-bloom periods (Fig. S3c), suggesting
that the intensity of environmental selection being stronger in bloom pe-
riods than in two non-bloom periods. These results concur with a recent
study of a drinking water reservoir in Ohio, USA, which showed stronger
8

effects of environmental factors on freshwater bacterioplankton communi-
ties during cyanobacterial bloom period than during non-bloom period
(Wang et al., 2020a). Such an increase environmnetal effects might result
in niche diversification for the microeukaryotic plankton (Novotny et al.,
2021; Xue et al., 2018; Tirok and Gaedke, 2006).

4.3. Ecological processes governing the assembly of ciliate communities

Our results suggest that the planktonic ciliate community of both reser-
voirswasmainly determined by stochastic processes (Fig. 4a), whichwas in
accordance with previous studies of freshwater microeukaryotes (Chen



Fig. 5. Variation partition analysis of the random forest predictive variables responsible for ciliate community dynamics (a), and partial least square path model (PLS-PM)
showing the direct and indirect effects of biotic and abiotic factors on ciliate community dynamics in Shidou and Bantou reservoirs (b), respectively.
PC, water physicochemical variables; NT, water nutrients; MZ, microzooplankton; CB, cyanobacterial biomass. The significant predictive variables (significant level at
P < 0.05) for ciliate community dynamics are given in Table S1 (a). Red lines represent indirect effects and blue lines represent direct effects. GoF, goodness of fit of the
model (b).
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et al., 2019; Xue et al., 2018), amoebae (Wang et al., 2020b; Ren et al.,
2018) and bacterioplankton (Nyirabuhoro et al., 2021; Wang et al.,
2020a). Our results revealed that dispersal limitation and undominated
processes explained more of the variation in community assembly during
non-bloomperiods than during cyanobacterial bloomperiods in both reser-
voirs (Fig. 4b), indicating that under the cyanobacterial bloom condition
the ciliate community composition changes were more dissimilar than dur-
ing non-bloom periods. This may reflect that the most abundant taxa show
rapid growth under suitable environmental conditions (Liu et al., 2019; Xue
et al., 2018) and some ciliate taxa are functionally redundant (Meira et al.,
2021; Weisse, 2017), suggesting that low dispersal rate during strong
bloom period was the primary cause of dissimilar community structure.
Our results also showed that homogeneous and heterogeneous selections
were largely responsible for the community assembly of ciliates during
the weak bloom period (in year 2018) in both reservoirs (30 %–53 %,
Fig. 4c), suggesting similar community composition during the weak
bloom periods. This is because of ciliate communities are shaped by envi-
ronmental selection owing to different habitat preferences and fitness of
the species (Wang et al., 2020b; Chen et al., 2019; Stegen et al., 2012;
Aberle et al., 2007), and the different species respond differently to
environmental factors (Simon et al., 2015; Stegen et al., 2012).

4.4. Reservoirs environmental variability related to ciliate community dynamics

We found significant changes of environmental condition, cyanobacterial
biomass and microzooplankton abundance with time (Fig. 3), even though
the changes were modest and explained a minor fraction of the planktonic
ciliate community variability along the 9 years. Our results suggest that
even small changes in the ecological conditions (transparency, water temper-
ature, pH, dissolved oxygen, electrical conductivity, oxidation reduction
9

potential and nutrients as well as cyanobacterial biomass) in reservoirs may
result in major disturbance of ciliate communities (Fig. 5a). Similar results
have been found for stream biofilm-associated ciliates, showing major
changes in ciliate community structure owing to variation in environmental
conditions, especially in the level of dissolved oxygen, temperature, turbidity,
pH and availability of nutrients (Dopheide et al., 2009). Previous studies have
shown that temperature, nitrogen andmicrozooplankton grazing can play an
important role during cyanobacterial blooms since blooms enhance the
positive relationship between metazoans and ciliates (Kosiba et al., 2018;
Ger et al., 2016; Boyer et al., 2011; Aberle et al., 2007). Since eutrophication
tends to strengthen the relationship between ciliate functional groups and
microzooplankton (Kosiba and Krzton, 2022; Tirjakova et al., 2016; Boyer
et al., 2011; Aberle et al., 2007), we found both positive and negative signif-
icant correlations between ciliate feeding groups and microzooplankton
(Fig. S5), indicating an impact of microzooplankton likely through predation
and mutual competition (Shabarova et al., 2021; Ger et al., 2019; Kosiba
et al., 2018; Moustaka-Gouni et al., 2006).

A recent global scale study of taxonomic and functional turnover in
ecological communities has shown that freshwater ecosystems had faster
rate of decay along environmental changes than those ofmarine ecosystems
(Graco-Roza et al., 2022), concurrently, our 9-year study expounded that
the taxonomic and functional structure of planktonic ciliate communities
in freshwater reservoirs in subtropical region affected by both environmen-
tal changes and cyanobacterial blooms induced biological disturbances.
Therefore, our results imply that the direct and indirect effects of environ-
mental factors (physicochemical and nutrient variables) and biological
disturbances (cyanobacterial biomass and microzooplankton grazing) are
likely collectively determining the ciliate community assembly. Altogether,
our findings shed light on the mechanisms undelaying long-term ciliate
community dynamics in subtropical reservoirs, and our 9-year time series
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analyses provided novel evidence for non-repeatable season succession of
ciliate communities related to variation in the intensity of cyanobacterial
blooms.

5. Conclusion

Our study provided detailed insight into the nine-year dynamics of the
planktonic ciliate communities in two subtropical reservoirs within three
cyanobacterial bloom and two non-bloom periods. We found five distinct
periods determined by cyanobacterial biomass, and the ciliate community
composition was closely related to these periods. The interannual variabil-
ity of ciliates was significant and twofold higher than seasonal variability.
Moreover, there was a strong directional change in the ciliate taxonomical
and functional structure over the nine years. The ciliate community composi-
tion was primarily determined by stochastic processes but also by environ-
mental variables and microzooplankton. However, disturbances caused by
cyanobacterial blooms (happening because of sudden changes in environ-
mental conditions) affected ciliate communities and caused changes in the
taxonomical and functional composition. Thus, cyanobacterial blooms led
to an increase in the deterministic community assemblages of the ciliate
community. Generalizing these results, we can say that every time a bloom
occurs, the ciliate changes to a community that is more similar to a previous
bloom, but different communities occurring during non-bloom periods.
Whereas during non-bloom periods, the ciliate community is more driven
by neutral processes and becomes different with time, and if interrupted
with a bloom, the community after the bloom is different from the commu-
nity before the bloom. By investigating the ecological characteristics of
ciliate communities and long-term variability of environmental variables,
cyanobacterial biomass and microzooplankton relative abundance in sub-
tropical reservoirs, this study has expanded our understanding of ciliate com-
munity dynamics in freshwater ecosystems under cyanobacterial bloom
disturbance.
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