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A B S T R A C T   

The influence of urban spatial form on the environment is complex and lengthy. The spatial analysis for the 
urban form and residential-related CO2 emissions at the city scale is challenging due to the lack of extensive 
urban form data and fine-grain CO2 emission maps. This research uses remote sensing data and downscaling 
interpolation to generate residential and transport (RTCE) maps in 130 m spatial resolution of urban center 
regions from 31 major cities in China, then investigates the relationship between 3 types of urban form indicators 
(Internal characteristics, external morphology, and development intensity) and RTCE through Geographical 
Weighted Regression method. The results reveal that urban form indicators could explain about 45.9% of RTCE. 
The 2D building shape indicator has the second greatest positive impact as the external morphology indicator, 
which complicates the influence. The internal characteristics indicators have relatively strong influences than the 
development intensity indicators. For instance, the influence of functional mixed entropy (FME) is the greatest 
positive influence and decreases exponentially with FME increases. Therefore, cities with the FME lower than the 
threshold (0.28) should increase it appropriately, while cities with the FME around and larger than 0.28 should 
maintain and probably reduce it.   

1. Introduction 

The 70%–80% of urban CO2 emissions in developed countries are 
generated by household activity (housing and transportation). By 2050, 
urban residents will reach 66% of the global population (Larsson et al., 
2019; Liu et al., 2021; United Nations, 2014). The emissions from resi-
dents’ transportation choice & distance and residential energy con-
sumption/use is proved to be influenced by urban form (Lee and Lee, 
2014). Therefore, scholars are committed to adjusting urban form to 
reduce environmental impacts (e.g., low-carbon city). The urban form is 
a spatial system composed of the urban layout (the spatial location of 
various urban elements), urban morphology (the external contour and 
structure of the city), and interrelations (the interaction between urban 
elements) (Xia et al., 2017). The representative indicators are from the 

aspects of external morphology, internal element spatial form, devel-
opment intensity, and so on (Sharifi, 2019). Urban morphology from an 
historico-geographical perspective, records the physical element 
changes and studies the agents and processes shaping the transformation 
of urban form over time (Oliveira, 2019). With the process of urbani-
zation, the profound impact of urban form on CO2 emissions is inevi-
table. Although different city types follow different evolution paths, 
similar urban form may lead to similar spatial characteristics of resi-
dential and transport CO2 emissions (RTCE). Based on this premise, 
defining multiple urban forms and understanding the relationship be-
tween typical urban forms and RTCE patterns could serve as a basis for 
inferring emission trends and guide practical management (Sharifi et al., 
2018). 

However, it is exceptionally challenging to curb the growth of CO2 
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emissions through urban form adjustment. Firstly, the previous research 
about the relationship between urban CO2 emissions and morphological 
characteristics focused on one or more of the building, community, or 
neighborhood scale. As the accounting system gradually improved, a 
series of urban, regional, or national scale research appeared. However, 
the accounting unit’s total or the average CO2 emissions were used in 
the panel or time series analysis. The spatial heterogeneity of urban CO2 
emission distribution caused by the composition and configuration of 
different urban functional areas cannot be captured (Knappe et al., 
2022; Liu et al., 2015). Secondly, the diversity of urban form indicators 
resulted in the inconsistency and incomparability of the studies (Zhang 
et al., 2021). Urban form indicators reflect the characteristics at the 
building and block scales, including ratios of building surfaces, volumes 
or lengths, building density, porosity, and compacity, among others 
(Santos et al., 2021). Many studies have been carried out mainly on 
mediating impact factors, urban form characterization methods, quan-
tification of actual impacts, and so on (Feyisa et al., 2014; Geng et al., 
2017; Ye et al., 2015). The landscape metrics of each grid pixel were the 
simple quantitative indicators reflecting the characteristics of urban 
structure composition and spatial configuration. Nevertheless, the scale 
sensitivity problem would bring the results bias. Furthermore, due to the 
limitation of acquiring urban architectural data, a few studies repre-
sented the building in detail (Wu et al., 2018). 

In addition, the mechanisms between urban form and RTCE are in-
direct and complex. The intermediary factors were different among 
cities. The time series and panel analysis showed that the urban sprawl 
of the mono-center city, fragmentation and random development had 
positive impacts on CO2 emissions (Wang et al., 2015, 2018; S. Wang 
et al., 2018). Urban form influences RTCE by residential choice, travel 
characteristics, and surrounding thermal environment (Fan and Myint, 
2014; Meng and Zacharias, 2021; Ou et al., 2013; Wang et al., 2015). 
Further studies showed that ignoring the spatial location, inherent 
geographical characteristics and urban characteristics of RTCE sources 
may lead to errors in research results (Wang et al., 2016). Moreover, 
internal differences of the urban form may lead to significant changes in 
CO2 emissions. Therefore, in order to understand the ideal urban pattern 
and discover the general effect rule of urban form on RTCE, it is 
necessary to bring the urban scale effect into consideration and break 
the limitation of administrative boundary on data, so as to explore the 
effect of the pattern of different urban functional areas on RTCE (Zuo 
et al., 2020). 

This study aimed to establish an approach to investigate the rela-
tionship between urban form and RTCE in order to find practical guid-
ance for the low-carbon city based on 31 Chinese major cities’ 
experimental data. Eight indicators were established to quantify urban 
form. With these city-level data, the Geographically Weighted Regres-
sion was utilized to investigate the effects of urban form on RTCE, which 
was downscaled from the Global Carbon Grid v1.0 data. The study was 
not only to fill the gaps about the lack of spatial heterogeneous infor-
mation and data at the pixel level but also to explore the influencing 
mechanism of internal characteristics, external morphology, and 
development intensity urban form indicators on RTCE. 

2. Data and methodologies 

2.1. Study region 

31 developing Chinese cities were selected as study areas. Most of the 
31 cities with the available urban form data were provincial capitals 
(Fig. 1). In the past 20 years, China has been experiencing rapid ur-
banization, accompanied by a large population aggregation, energy 
consumption, and CO2 emissions. China’s total household CO2 emis-
sions accounted for 42.17% of the national CO2 emissions, and house-
hold direct CO2 emissions accounted for 27.55% of the total household 
CO2 emissions (Liu et al., 2011). CO2 emissions from both rural and 
urban households are increasing. The highly urbanized urban center has 

mature administrative, commercial, and infrastructure facilities and is a 
typical region to study the impact of urban form on RTCE. According to 
Global Urban Boundary (GUB) dataset (Li et al., 2020), we defined the 
urban centers as the study areas that have been already urbanized since 
2000. Compared with the existing urban center region, the scattered and 
fragmented regions, which might belong to the traditional town center, 
were eliminated. The city in this study refers to the city center region we 
identified. The analysis result of these cities could reveal the potential 

Fig. 1. The research areas of 31 cities.  
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association between the urban form of urban center areas and RTCE in 
China. 

2.2. Data sources 

The original CO2 emissions in this study were derived from the 
Global Carbon Grid v1.0 of Global Infrastructure Emission Database 
(GID) produced by Department of Earth System Science Tsinghua Uni-
versity.1 The Global Carbon Grid v1.0 provides global 0.1◦ × 0.1◦2 en-
ergy consumption CO2 emission map for six sectors in 2019, which 
includes power, industry, residential, transport, shipping, and aviation. 
Except for the point source data, residential sector data of GID are from 
International Energy Agency (IEA) and include the household con-
sumption, excluding the fuel used for transport. The urban and rural 
population densities are used as the proxy to interpolate the CO2 emis-
sions. Transport sector data are from IEA CO2 emission data and are 

interpolated and distributed onto road atlas (Meijer et al., 2018) based 
on the weights of the different types (Zheng et al., 2014). In terms of the 
IEA transport sector CO2 emissions data,3 the ratio of global emissions 
from the passenger road vehicles and road freight vehicles is about 3:2. 
The weights of the emissions from passenger road vehicles and freight 
trucks on the county road, which is the major road type in the urban 
center region, are 80% and around 15% (Zheng et al., 2014). Therefore, 
each grid value of GID transport emissions generally could be divided 
into 1 unit freight and 8 unit passenger emissions. Furthermore, there 
are restriction rules for the heavy and medium duty freight vehicles in 
the urban center regions in China due to the air pollution control. In 
brief, the freight vehicle’s CO2 emissions account for a small part of the 
emissions in the urban center region. 

Since the spatial resolution of the GID data is coarse, we downscaled 

Fig. 2. Spatial pattern of residential CO2 emission in a. Beijing (Type I—high green space and road length density), b. Kunming (Type II—high functional mixed 
entropy), c. Suzhou (Type III—similar but higher form indicator values than Type IV, except for green space density), d. Hangzhou (Type III), e. Hefei (Type IV), f. 
Nanjing (Type IV). 

1 http://gidmodel.org.cn/.  
2 0.1◦is equal to approximately 11.1 km at the equator. 

3 IEA, Transport sector CO2 emissions by mode in the Sustainable Develop-
ment Scenario, 2000–2030, IEA, Paris.https://www.iea.org/data-and-statistics 
/charts/transport-sector-co2-emissions-by-mode-in-the-sustainable-develo 
pment-scenario-2000-2030. 
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the CO2 emissions using the Luojia 1-01 nighttime light imagery data4 as 
the proxy variable, whose spatial resolution is about 130 m, to produce 
the more satisfactory resolution gridded CO2 maps in order to meet the 
analysis requirement of the core urban region (Jiang et al., 2018). The 
nighttime light imagery of China was derived from 275 images of Luojia 
1-01 captured from June to December 2018 and had less than 0.983 
pixels median error in positioning accuracy. Based on the 
high-resolution image, we used the digital number (DN) values as the 
weight to allocate the Luojia grid CO2 emissions. 

We used eight indicators from the perspective of external 
morphology (e.g., building shape index (LSI) and building floor (BF)), 
internal characteristics (e.g., functional mixed entropy (FME), bus sta-
tion density (BS), and road intersection density (RI)), and development 
intensity (e.g., road length density (RL), green space density (GS), and 
building area density (BA)) to depict the urban form in the study area. 
They were calculated based on data mainly including the Points of In-
terest (POI) data with spatial attribute information, building data, road 
network data, and essential urban land use categories (EULUC) data 
(Gong et al., 2020). Please see supplementary material for details. 

2.3. Urban form description and classification 

The urban layout directly impacts microclimate parameters (e.g., 
temperature), whose adjustment would bring additional energy con-
sumption and CO2 emissions. In terms of the building influences on land 
surface temperature modeling, the 3D indicators are more determinant 
than 2D ones (Santos et al., 2021). Therefore, building height and shape 
index were selected to represent the external morphology. Floors from 
building outline data represented building height. The shape index of 
landscape metrics was used to measure the deviation degree between 
the building shape and the circle of the same area. The large value 
represents the complexity of the patches or the proportion of the 
perimeter to the area of patches. This indicator is sensitive to the size of 
the patches. The calculation equation is as follows: 

LSIi =
Si

2
̅̅̅̅̅̅̅
πAi

√ (1)  

where LSIi is the building shape index on the grid i. Si is the perimeter of 
the building, and Ai is the area of building patches on the grid i. 

The internal characteristic indicator selection mainly depends on the 
intermediate factors of urban form influence. These indicators are 
related to building (size and type) and travel behavior (distance and 
type) (Ewing and Rong, 2008), which reveal the action path of the in-
ternal influence mechanisms and the common characteristics of 
different types of urban forms. Therefore, the BS, RI, and FME, which 
have impacts on the travel behavior, were selected as the internal 
characteristic indicators. BS (including the metro, bus, and BRT) were 
calculated through the zonal statistics tool in ArcMap 10.3 based on POI 
data. The RI was calculated through the feature vertices to points and 
spatial join functions in ArcMap 10.3 based on road network data. Frank 
and Pivo proposed an information entropy model based on different 
types of POI data according to the basic principle of information entropy 
(Pivo and Frank, 1994). The FME, which measures the mixing degree of 
functional areas, was based on the principle of information entropy 
calculation according to the point category of POIs. In this study, the POI 
dataset contains N (N = 11) categories, such as educational, industry, 
medical, hotel, residential, administrative, transportation facilities, blue 
& green space and tourist attraction, entertainment industry, catering 
trade, other commercial fields (Table A1). If each category includes T1, 
T2 … Tn, then T = T1+T2+ …... +Tn = ΣkTk (k = 1, 2, …, n), and its 
probability can be defined as: 

Pi =
Ti

T
=

Ti
∑N

i Ti
(2)  

H= −
∑N

i=1
Pi × logPi (3)  

where 
∑

Pi = 1, H (H ≥ 0)is the information entropy representing the 
mixing degree of various urban functional types. The higher the H value 
is, the more diverse the land use functions are. When T1 = T2 = … … =
Tn and P1 = P2 = … … = Pn = 1/N, H reaches the maximum (Hm =

logN。). If Pe = 1/N, the mixing degree of the urban functional area has 
reached a stable state. 

To calculate the information entropy of each raster grid, the formula 
is as follows: 

Pij =
Tij

Tk
(4)  

Hs = −
∑M

i=1

∑N

j=1
Pij × logPij (5)  

where 
∑

i
∑

j Pij = 1.Hs is the spatial information entropy of grid MN and 
the sum of information entropy of all different types of POIs in this grid. 
The higher the information entropy value is, the higher the mixing de-
gree of the functional area is. 

Development indicators represent the morphological characteristics 
brought by the urban scale effect and match with the development of 
economic activities. The GS, RL, and BA were selected as the develop-
ment indicators. The GS was calculated through zonal statistics in Arc-
Map 10.3 based on the EULUC data. RL and BA were calculated by 
building outline data. The calculation formula is as follows: 

Rd =
Lmn

S
(6)  

Bd =
BAmn

S
(7)  

where Rd is road length density, Bd is building area density, Lmn is road 
length (m), BAmn is building area (m2) in the grid mn, and S is grid area 
(m2). 

Eight indicators of each grid in 31 cities were standardized through 
Min-Max normalization. In terms of the eight indicators, we classified 31 
cities into 4 categories (TypeI, II, III, and IV) using the K-Means method 
(Figure A1 and A2). Please see supplementary material for details. K- 
Means method is a quick clustering method with low algorithm 
complexity and high efficiency (Molla et al., 2022). Differences among 
the clusters of urban form indicators were tested using the T-test by SPSS 
(Version 16.0) (Table A2). Then the mean values of each group were 
calculated. 

2.4. RTCE map downscaling interpolation and anlysis 

Since 31 cities are distributed in different regions of China, the 
GCS_WGS_1984 geographic coordinates of GID and Luojia 1-01 remote 
sensing images are projected into UTM Zone 48–52 coordinated system 
and WGS 1984 datum. The road intersections of each city were selected 
to match GID and Luojia data through the georeference tool in ArcMap 
10.3. The 3–12 control points of the intersections were registered uni-
formly throughout the study region. We dropped the control points, 
which had the residual error larger than one gird resolution. After 
masking with the 31 study area boundaries, the downscaling interpo-
lation was carried out. 

The total CO2 emissions in each small Luojia grid were calculated as 
follows (Fig. 2 for the typical cities of four different urban forms 
recognized via the K-means cluster map (Figure A2)). 

4 http://59.175.109.173:8888/app/login_en.html. 
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{

Ci =
DNi

DNj
×Cj (8)  

{

DNj =
∑k

1
DNi,1 +…+DNi,k (9) 

Ci is the CO2 emissions of small Luojia 1-01 grid i. DNi is the night 
light brightness of the Luojia grid i. DNj is the night light brightness of 
GID rid j, and is the sum of all Luojia 1-01 grids in the 0.1◦ grid. Cj is the 
total CO2 emission of GID grid j. The mean R2 between the CO2 and DN 
values of the Luojia data in 31 cities is 0.796 (Table A3). 

Global Moran’s I reflects the global spatial autocorrelation between 
different geographical regions and was used to analyze the spatial 
autocorrelation. Moran’s I value is between − 1 and 1, whereby the 
positive value indicates the similarity, while the negative value indicates 
the difference of the grids. The local Getis Gi* was used to identify the 
cold (Low-Low cluster) and hot (High-High cluster) spots area of the 
RTCE maps. 

2.5. Geographically Weighted Regression (GWR) method 

The GWR method of Arcmap 10.3 was used to analyze the rela-
tionship between the urban form and RTCE due to the correlation and 
heterogeneity of the spatial data. The GWR model belongs to the Spatial 
Varying-Coefficient Regression model, expanded the linear regression 
model to make the regression coefficient b change with the spatial po-
sition of i. The coefficient reflects how the independent variables impact 
the dependent variables that change with spatial position. The equation 
is as follows. 

yi = β0(ui, vi)+
∑

k
βk(ui, vi)xik + εi i= 1, 2,⋯, n (10)  

where yi is the dependent variable at grid i, (ui,vi) is the location of grid i, 
ßk(ui,vi) is the kth regression coefficient of grid i. The continuous func-
tion ßk is a function of distance attenuation, where the Gaussian kernel 
function is used, and the bandwidth is the feature scale. xik is the value of 
the k-th independent variable at grid i.εi is the residual. The coefficients 
of the independent variables represent the influence direction and 
power on RTCE. We used the variance inflation factor (VIF), equal to 1/ 
(1-R2), to measure the collinearity. R is the negative regression 

correlation coefficient of the other independent variables. If the VIF 
exceeds 10, the regression model has a severe multicollinearity problem, 
and the variable should not be included in the regression (Vittinghoff 
et al., 2012). 

3. Results 

3.1. Residential CO2 emissions pattern in the urban center regions 

The intensity and summary of the 31 cities’ CO2 emissions were not 
significantly different. In Fig. 3, Beijing (Type I) was the first and second 
greatest city in emission summary and intensity, respectively. Kunming 
(Type II) had relatively small total and medium mean emissions. The 
emission intensity of the Type III cities was higher than the Type IV 
cities. The total emissions of the Type III cities were slightly lower than 
the Type IV cities. Shanghai emitted the second largest CO2 among 31 
cities. With the greatest emission intensity, Shanghai was about six times 
higher than that of Yantai, which was the lowest. It is worth noting that 
the Xiamen and Wuhan had relatively high intensity and total emissions. 
The standard deviations of the great emission intensity cities were large. 
Except for Yantai, the other 30 cities had pixel values of CO2 emissions 
larger than 1000 t/km2. Most of the pixel values of the 31 cities were 
scattered, except for Xiamen and Yantai of the Type III city and Dalian, 
Guiyang, Nanning, Tangshan, and Xi’an of the Type IV city (Figure A3). 

The Moran’s I of the four cities types ranged from 0.473 to 0.911, 
showing no significant difference (Fig. 4). Chongqing (0.911) and Yantai 
(0.883) from the Type II city were the top two highest Moran’s I values 
cities. Tangshan (0.473), Harbin (0.564), and Shijiazhuang (0.597) 
belonged to the Type IV city were the three lowest Moran’s I values 
cities. Besides, there were significant statistical differences in the pro-
portion of cold-hot spots in the four cities types (Figure A4). The hot and 
cold spot areas of most Type III cities were smaller than the other three 
types of cities. It represented that the aggregation pattern of the Type III 
city was relatively weak. Kunming (Type II), Shijiazhuang (Type IV), 
and Tangshan (Type IV), which didn’t have significant total emissions, 
had a high proportion of hot spots with 31.4%, 42.2%, and 35.9%, 
respectively. The cold spot proportions in some cities were close to 0 (e. 
g., Wuxi, Changchun, Ningbo, Xiamen, Tianjin, and Wuxi). 

Fig. 3. The mean (left axis with bar and standard error) and total (right axis with point) residential CO2 emissions in 31 cities.  
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3.2. Descriptive analysis of urban forms indicators 

Beijing and Kunming were the only cities in Type I and II, respec-
tively. Beijing’s green space area ratio (146438.27 m2/km2) and road 
length density (16061.99 m/km2) were high. While the functional 
mixed entropy (FME), building area, and building floor were low at 
0.088, 20572.551m2/km,2 and 381.842 floor/km,2 respectively. The 
FME (1.406) and bus station density (5.412 per km2) of Kunming were 
high. In contrast, the values of other indicators were low. There were 
significant differences between Type III (11 cities) and Type IV (17 
cities), except for the green space density (Table A2). The Type III city (e. 
g., Suzhou, Hangzhou, and Shanghai) had higher values of bus station 
(6.918–2.613 per km2), road intersection (266.439–88.638 per km2), 
road length (18258.275–14662.198 m/km2), building area 
(245688.418–162160.231 m2/km2), building shape index 
(1.142–0.918), building floor (6431.148–469.645 floor/km2) and FME 
(1.051–0.114) than the Type IV cities (e.g., Shijiazhuang, Hefei, Nan-
ning). However, the green space density and FME of the Type III city 

were much lower than of Beijing and Kunming. The eight indicators of 
the urban form of Type IV city were lower than the overall average level 
(Fig. 5). 

From the perspective of different functional area proportions (Fig. 6), 
the residential zone occupied the highest area proportion in the 31 cit-
ies. The average residential zone proportions of the four types of cities 
were 46.93%, 32.90%, 46.86%, and 41.38%, respectively. The resi-
dential zone proportions of some cities were relatively minor, such as 
Yantai (16.19%) and Nanning (17.81%). Chongqing (68.86%) and 
Guiyang (61.42%) had relatively large residential zones. Except for 
Beijing, the park & greenspace zone was the smallest functional zone for 
the other type of cities. The transportation and park & greenspace zones 
accounted for 19.90% and 14.33% of the area in Beijing (Type I) and 
28.68% and 12.07% in Kunming (Type II), respectively. The Type III, 
which included the representative cities of Hangzhou and Suzhou, had 
the mean proportion of industrial zones (17.48%), transportation zones 
(14.05%), and commercial zones (10.35%). The mean area proportion 
of industrial zones (19.32%) was slightly higher than transportation 

Fig. 4. The cold and hot spots map of the residential CO2 emissions in a. Beijing (Type I), b. Kunming (Type II), c. Suzhou (Type III), d. Hangzhou (Type III), e. Hefei 
(Type IV), f. Nanjing (Type IV), the Moran’s I and area proportion of cold and hot spots in 31 cities. 
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zones (18.38%) among the Type IV city which included the represen-
tative cities such as Nanjing, Hefei, and Shijiazhuang. 

3.3. Impacts of urban forms on RTCE 

GWR model has different independent variables in different cities 
(Table A4). The results showed that the eight indicators accounted for 
45.9% of RTCE. The mean R2 of the four types of cities were 0.356, 
0.543, 0.432, and 0.476, respectively. The difference was not signifi-
cant. The rank of average regression coefficients (ARC) was FME > LSI 
> BS > RI > BF > RL > GS > BA. 

The ARC of FME was positive in most functional zones of most cities 
but negative in some zones (e.g., the business zone of Xiamen, the in-
dustrial zone of Chongqing, the medical zone of Shijiazhuang, the green 
space zone of Changsha and Chongqing, and the sport of Changsha) 
(Figure A5). It means that FME had the greatest positive influence in 

most cities. However, there is an opposite trend in some different 
functional areas. The FME had the greatest influence on the adminis-
trative zone and the least on the medical zone for the Type I city. As to 
the other three types, the great influence appeared in the sport, followed 
by the administrative zone. The industrial zone has the least influence 
on the FME. It showed that the urban form of Type I may be quite 
different from the other three types. 

The Type I city (only Beijing) had low FME (0.088) and higher ARC 
(Range: 93.97 to 9860.95, Mean:151.22) in nine functional zones than 
those of the other three types of cities. The Type II city (only Kunming) 
had the high FME (1.406) and lower ARCs (Range: 0.84 to 2.97, Mean: 
1.66) in the nine functional zones than cities of the other three types. 
The mean FME of the Type III city (0.60) was higher than that of the 
Type IV city (0.29), but the ARCs (Range: 15.49 to 29.65) in the nine 
functional zones were lower than that in the Type IV city (Range: 28.39 
to38.62). Therefore, we preliminary inferred that the region with low 

Fig. 5. The classifications of the 31 cities via urban form indicators. The Type I city only includes Beijing. The Type II city only includes Kunming. The Type III city 
includes Chongqing, Wuxi, Shenyang, Hangzhou, Changchun, Suzhou, Ningbo, Changsha, Shanghai, Yantai, and Xiamen. The Type IV city includes Dalian, Foshan, 
Guangzhou, Jinan, Tangshan, Nanjing, Hefei, Shijiazhuang, Wuhan, Nanning, Qingdao, Fuzhou, Xi’an, Chengdu, Tianjin, Guiyang, Harbin, and Zhengzhou. 

Fig. 6. Area proportions of the different functional zones.  
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FME greatly influenced RTCE. However, with the increase of FME, its 
influence decreased continuously, which indicated that the city with the 
highest FME had the smallest ARC value. Based on the ARCs and FMEs of 
31 cities, the exponential function with 0.792 R2 was the best fitting 
equation. When the FME was less than 0.28, the regression coefficient 
decreased sharply and then decreased gradually with the FME increased. 
It meant that the increase of FME significantly impacted RTCE when it 
was less than 0.28, and then the influence decreased (Fig. 7). 

In general, although the ARC of building shape index (LSI) was 
positive in most cases, the more complex the building shape with 
considerable LSI value, the greater the RTCE (Figure A6). That is, when 
the 2D shape of a building is relatively simple, the influence on RTCE is 
greater. However, the influence becomes complicated with the irregu-
larity of the building. Except for that, the ARCs of some functional zones 
(except green land and industrial land) were negative, such as the 
commercial zone in the Type III and IV cities, indicating that the larger 
the LSI value, the less RTCE. 

The ARC of bus station density (BS) was less than 1.0 in different 
functional zones of most cities (Figure A7). The Type II cities had the 
largest BS value (5.41 per km2) and large ARC. However, the other types 
of cities didn’t show a similar relation. BS has a greater impact on the 
increase of RTCE in the park & green space, the commercial and 
educational zones than the other functional zones. 

Referring to RI variable, the absolute value of the ARC of each 
functional zone ranged from 0.004 to 0.046 (Figure A8). The ARCs of 
medical and educational zones in Beijing and Kunming were both 
negative. Shanghai, a city with the highest RI (266.44/km2), had 
negative ARC in all the nine functional zones. However, regression co-
efficients’ effect directions in other cities were various in different 
functional zones. The ARCs of FL, RL, GS, and BA were small, with ab-
solute values ranging from 0.001 to 0.035, 0.001–0.002, 0.00–0.001, 
and 0.00–0.005, respectively (Figure A9-A12). The FL’s ARCs of Suzhou 
(Type III), Dalian (Type IV), Guiyang (Type IV), Qingdao (Type IV), and 
Tianjin (Type IV), the RL’s ARCs of Guiyang (Type IV) and Suzhou (Type 
III) were all negative in the nine functional zones. Only two cities 
(Ningbo and Xiamen) had the GS variables in the regression with 
negative coefficients. 

4. Discussion 

4.1. 1The factors affect the residential CO2 emissions 

The research findings at the national, provincial, and city scales 
indicate that different urban spatial factors, which can be divided into 
direct and indirect factors, have a significant impact on RTCE. Our result 
is consistent with the prior study that about 50% of urban CO2 emissions 
can be attributed to urban form, land mix, building types, and transport 
networks (Christen et al., 2011). Except for that, the economic, popu-
lation, and urban area sprawl were the significant factors accelerating 
the urban CO2 emission. From the regional scale, urbanization positively 
affects CO2 emissions through a series of approaches (Cheng and Hu, 
2022; Shi et al., 2020a,b; Wang et al., 2018). Shi et al. (2020a,b) found 
that the urban area, economic structure, and population could affect the 
CO2 emission based on the 264 Chinese cities data from 2000 to 2015. 
Fan et al. (2017) used the Divisa decomposition method to find that 
urban-rural population structure facilitated the residential energy con-
sumption structure improvement. The GDP, tertiary industry ratio, and 
energy intensity could also influence the RTCE (Su and Lee, 2021). 
Because the economic level determines the residential income and living 
conditions. From the individual scale, the social factors such as the 
educational level, building characteristics and the degree of aging, travel 
instrument preference, travel distance, family condition, and commu-
nity type affected the RTCE. Moreover, upon referencing previous 
studies, the precipitation impacts the RTCE due to the choice of the 
travel instrument (Fan et al., 2018; Kashifi et al., 2022; Shi et al., 2019). 
Besides, the green space in urban regions has the positive effects on CO2 
emissions might be due to the residents’ preference and aggregation. 
The temperature affects the energy used for heating and cooling. 

Among the urban form indicators, RL, BS, and BA represent urban 
scale effect and development intensity. We found that an increase of 1 
unit intensity per square kilometer of the three indicators had minor 
impacts on RTCE. It may be due to the magnitude difference caused by 
the non-normalization of the independent variables. The scale effect 
indicators lead to two sides of the influence on RTCE. On the one hand, 
the increase of construction land promoted the expansion of the urban 
center to the suburbs and increased the distance of traffic travel and the 
absorption of the solar heat resulting in the increase of RTCE. On the 
other hand, optimizing the construction of the urban center may 

Fig. 7. The relation between the functional mixed entropy and the GWR mean regression coefficients in 31 cities. The red, yellow, light blue and blue dot represents 
the Type I, II, III and IV city, respectively. The numbers follow the city names represent the size order of the urban area. Point A, B and C are hypothetical. 
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alleviate traffic congestion, increase accessibility, and reduce urban heat 
island effect leading to the decrease of RTCE (Choi and Zhang, 2017a). 

As to urban external morphology indicators (LSI and BF), we found 
that in most cases, the more complex the 2D shape of the building, the 
greater the RTCE. The result was consistent with previous studies, which 
showed that no matter 3D building shapes, land use patch shapes, 
complexity, irregular and dispersed shapes (represented by Edge Density 
(ED), Landscape Shape Index (LSI), Fractal Dimension Index (FRAC) or 
Building Shape Coefficient (BSC)) would lead to more CO2 emissions. 
For the 3D morphology of the individual building, the larger heat 
dissipation area and raised temperature results in high energy con-
sumption (Xu et al., 2021). The complex shape of the building means 
more adjacencies with soil cover, which have a substantial effect on the 
increase in land surface temperature (Azhdari et al., 2018; Hu et al., 
2022). For city-level CO2 emissions, studies on urban land patch shape 
complexity represented by ED indicated that scattered and irregular 
land use was associated with increased CO2 emission levels (Wang et al., 
2017). Xia et al. (2017) found that the center region of Beijing with the 
most CO2 emissions was more complicated than the suburban and 
exurban regions. In addition, we found that one-third of commercial 
zones in the 31cities showed that the more complex the building shape 
was, the less RTCE emitted. It might be due to the potential public 
transportation requirement resulting from large commercial zones with 
complex shape (Ou et al., 2019). Similar to the building shape influence, 
the ARC of building height is positive in more than two third of the 
cities, indicating that in most cases, building height had a positive 
impact on RTCE. This is consistent with early results, in which taller 
buildings got more daylight and solar energy and increased the risk of 
overheating. Moreover, the operation of ventilation equipment and 
elevator increased the energy consumption, thus offsetting the energy 
saving caused by the increase in illumination time (Borck, 2016). 
Building height affected the thermal environment and solar access, 
affecting CO2 emissions in densely packed regions (Kaspersen et al., 
2016). However, the life cycle assessment method found that for com-
mercial buildings less than 12 floors, the impact of building height was 
small, mainly relying on technical system solutions to reducing energy 
consumptions. CO2 emissions increased slightly from buildings wiht 12 
to 21 floors. A study of office building emissions found that average 
carbon emissions would increase more than doubled when the building 
height rising from 5 floors and below to 21 floors and above (Godoy--
Shimizu et al., 2018). 

The FME, BS, and RI, which represent the internal characteristics of 
urban form, directly influenced the residential travel accessibility and 
efficiency. Although most studies showed that public transportation 
system reduced CO2 emissions from travel. Its impact is neither absolute 
nor direct. The service efficiency of public transport (e.g., accessibility of 
the BS and route design of the RI) is the key to different results. We found 
that in densely populated areas, there is greater demand for public 
transit stations to access parks, commercial and educational zones. 
Furthermore, the increase in travel emissions when adding one bus 
station per square kilometer, the increase of travel emissions was also 
greater. It corresponded with the study, which showed that the number 
of buses positively impacted CO2 emissions from transport (Sun et al., 
2019). Through Eddy Covariance (EC) measurements of CO2 flux (FC), it 
is found that the main sources of CO2 emissions in the urban area of the 
city of Heraklion come from the main roads and intersections with heavy 
traffics (Stagakis et al., 2019). The number of intersections affects the 
accessibility of surrounding service facilities, the speed of vehicles, and 
the degree of congestion, thus affecting CO2 emissions (Massar et al., 
2021). Through model simulation and field measurement, scholars 
found that transforming two-way parking controlled intersections into 
roundabouts in highest traffic volume scenarios can reduce vehicle 
emissions (Gastaldi et al., 2017; Yang et al., 2017). However, some 
studies suggest that different types of intersections have different im-
pacts on CO2 emissions under different restrictions (e.g., Arterial level) 
(Fernandes et al., 2019). Shanghai, the city with the highest intersection 

density (266.44 per km2), has negative average regression coefficients in 
all nine functional zones, but the effect directions of regression co-
efficients in other cities are different in various functional zones. This 
irregularity may be caused by not distinguishing different types of in-
tersections. Further studies can be conducted to explore the impact of 
different intersections on the urban scale. 

4.2. Impacts of the FME on RTCE 

A large amount of the previous studies were conducted at individual 
and household scales. Scholars revealed that high-density and mixed 
land use could improve accessibility so that high-density and mixed land 
use mitigated transport CO2 emissions, especially per capita emissions, 
while the densification and mixed-use development might also lead to 
slow vehicle speeds and more vehicle emissions at the individual and 
household scale (Son et al., 2018). Land use affects travel costs through 
distance and time consumption. When the costs fall, people prefer 
walking, biking or taking public transport. Moreover, to a certain extent, 
land use changes transportation emissions by influencing vehicle miles 
traveled (VMT). Even after controlling traveler preferences, the effect of 
urban form on the transportation emission was still significant, which 
was larger than 50% on VMT. However, the relationship direction be-
tween land use and travel changed to a different direction at a large 
geographical scale. Some results showed that families might frequently 
take short-distance vehicle trips even if they lived in areas with high 
mixed density or good job-housing balance (Nasri and Zhang, 2015). 
CO2 emissions in mixed-use buildings are higher than in general resi-
dential buildings (Choi and Zhang, 2017b). Because the vehicle travel 
emissions were influenced by local urban form factors and the large 
geographical environment. The accessibility in the city context had a 
greater impact than on individual and local scale projects. The influence 
of the urban form of adjacent areas depends on the urban spatial context 
and transportation infrastructure (Choi and Zhang, 2017a; de Koning 
et al., 2020; Lee and Lee, 2020; Soliz, 2021). The metropolitan city can 
disperse the various functional areas to the newly developed region 
(Fang and Yu, 2017). This could explain our findings that the mixing 
entropy of central metropolitan areas such as Beijing, Shanghai, and 
Guangzhou was low but had a significant influence on the RTCE at the 
regional scale. This study found that the influence of the FME on the 
RTCE was positive. With the increased FME, the influence power grad-
ually reduced in cities such as Kunming, Xiamen, and Ningbo which 
have the small central region area and high FME values. The reason 
might be that the growth of emissions was offset by the efficiency from 
the economic scale (e.g., population and resources) effect. The 
mixed-use of residential, commercial, and office space had co-benefits, 
including boosting the local economy, providing public services and 
community support, and reducing landscape fragmentation (Abubakar 
and Dano, 2019). This compact form favored non-motorized transport 
(e.g., walking and cycling) and supported the development of public 
transportation (Kammen and Sunter, 2016). The degree of mix should 
have a reasonable range. Based on multi-scale studies, scholars believed 
there might be a U-shaped curve between urban population density and 
residents’ direct traffic emissions (Zhang et al., 2015). We assumed that 
the law found in this study conformed to the downward trend of the left 
half of the curve. However, the upward trend of the right half has not yet 
been shown because of a lack of experimental data (Fig. 7). Suppose we 
used the quadratic function to test the probability of the U-shaped based 
on the existing 31 cities data (Lind and Mehlum, 2010). The quadratic 
term was significant (P value 0.002 < 0.01) despite the 0.463 R2. The 
estimated extremum point of FME (0.872) was in a reasonable interval 
[0.088, 1.406], which was the range of 31 FMEs. The slope at FME equal 
to 0.088 was − 225.750, and the slope at FME equal to 1.406 was 
154.520. The slope of the tangent decreased when FME was less than 
0.872 and vice versa. The results demonstrated that the curve was 
U-shaped in the range of existing data. Theoretically, when the effi-
ciency of the urban scale effect represented by population density and 
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building density was stripped, and the FME was larger than point A, the 
ARC of FME would be negative. The scale effect efficiency increased first 
and then decreased, leading to the optimal maximum value of the FME 
at point B (without the scale effect) and C (with the scale effect). 
However, we weren’t sure where the point C would be in this study, 
Because there were a few cities with FME larger than 0.8. We suggested 
that cities with regional FME below 0.28 increase the FME appropriately 
to reduce the influence, cities with FME near 0.28 maintain the FME, 
and cities with FME above 0.80 (Yantai, Xiamen, Ningbo, and Kunming) 
should consider reducing or maintaining the FME. Because the average 
FME of a small number of cities was greater than 1.0. Although Xiamen 
and Kunming were in line with the trend of the fitting curve, Ningbo 
showed high FME and strong influence. 

4.3. Significance, limitation and recommendation 

Through the spatial analysis, this study demonstrates the impacts of 
Chinese urban center spatial forms on residential and transport CO2 
emissions at the grid scale. The strengths are as follows: (1) This study is 
one of few studies to connect the large (city, provincial, and national) 
and small (community, block, and individual) scales. (2) Spatial anal-
ysis, which is different from ordinary linear and time series analysis, 
considers the spatial location information of urban form. (3) The rule we 
discovered about the influence of FME on RTCE can guide the devel-
opment of some regional land use policy tools. 

This study also has a number of limitations. First, the study, which 
was on the urban scale, didn’t consider personal behavior factors. 
Therefore, the study was based on the hypothesis that the environment 
drives personal behaviors. (2) The independent variables of GWR 
analysis were not dimensionless, which may lead to lower regression 
coefficients of some impact factors. But the regression results were easy 
to interpret. (3) The small grid obtained by downscaling interpolation 
may influence the research results. 

We suggested that more empirical data should be collected in the 
future to further study the influence of FME on RTCE in different urban 
areas in order to demonstrate whether the hypothetical inverse hump- 
shaped or U-shaped curve exists. In addition, the influences of config-
uration and composition of different functional areas should be further 
discussed. Furthermore, the selection of indicators for urban interior 
features can be further discussed, such as the selection of the new and 
more representative indicators and the detailed classification of FME, 
intersection points, and bus station data. Lastly, the analysis result of 
GWR is based on the cross-sectional data. When the data is available,the 
cause-and-effect relationship could be tested in further research by using 
methods such as geographical and temporal weighted regression 
(GTWR). Meanwhile, the other method to test the cause-and effect 
relationship is field observation and investigation by eddy covariance. 

5. Conclusion 

Most of the existing research focused on scales larger than the city or 
smaller than the local region. In this study, we investigated the associ-
ation between the urban form and RTCE based on experimental data of 
the 31 cities and revealed that internal urban characteristics were 
important. 

The research results found that most city forms were similar among 
the 31 city centers based on the eight indicators. The Type III city centers 
had higher indicator values than Type IV city, which indicated more 
mature infrastructure in the Type III city. Type III city had higher 
emission intensity and slightly lower total emissions than Type IV city. 
This is, probably due to the city scale effect. Moreover, the CO2 emission 
aggregation pattern of the Type III city was relatively weak. 

In addition to the urban form characteristics, we found that the eight 
urban form indicators explained about 45.9% of RTCE. The rank of ARC 
was FME > LSI > BS > RI > BF > RL > GS > BA. The internal charac-
teristics indicators (FME, BS, and RI) had significant influences on RTCE. 

The influence of FME on RTCE would decreased with the increase of the 
FME value based on the fitting exponential function. 

Another finding was that the ARC of FME was positive in most 
functional zones of most cities. The influence of the FME on RTCE would 
decrease with the increase of the FME value based on the fitting expo-
nential function. Therefore, we suggested that cities with FME below 
0.28 increase it appropriately to reduce the influence, and cities with 
FME near 0.28 maintain it. We assumed that the pattern found in this 
study conformed to the downward trend of the left half of the U-shaped 
curve. Cities with FME above 0.80 (Yantai, Xiamen, Ningbo, and 
Kunming) should consider to reduce or maintain it. 

Besides FME, in most cities, the RTCE increased with the complexity 
of the 2D shape of the building growing. The simple shape had a great 
influence on RTCE. However, the influence became more complicated 
when the form turned irregular. 
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Santos, T., Deus, R., Rocha, J., Tenedório, J.A., 2021. Assessing sustainable urban 
development trends in a dynamic tourist coastal area using 3D spatial indicators. 
Energies 14 (16), 5044. https://doi.org/10.3390/en14165044. 

Sharifi, A., 2019. Urban form resilience: a meso-scale analysis. Cities 93, 238–252. 
https://doi.org/10.1016/j.cities.2019.05.010. 

Sharifi, A., Wu, Y., Khamchiangta, D., Yoshida, T., Yamagata, Y., 2018. Urban carbon 
mapping: towards a standardized framework. Energy Proc. 152, 799–808. https:// 
doi.org/10.1016/j.egypro.2018.09.193. 

Shi, K., Xu, T., Li, Y., Chen, Z., Gong, W., Wu, J., Yu, B., 2020a. Effects of urban forms on 
CO2 emissions in China from a multi-perspective analysis. J. Environ. Manag. 262 
https://doi.org/10.1016/j.jenvman.2020.110300. 

Shi, K., Xu, T., Li, Y., Chen, Z., Gong, W., Wu, J., Yu, B., 2020b. Effects of urban forms on 
CO2 emissions in China from a multi-perspective analysis. J. Environ. Manag. 262 
(110300) https://doi.org/10.1016/j.jenvman.2020.110300. 

Shi, K., Yu, B., Zhou, Y., Chen, Y., Yang, C., Chen, Z., Wu, J., 2019. Spatiotemporal 
variations of CO2 emissions and their impact factors in China: a comparative analysis 
between the provincial and prefectural levels. Appl. Energy 233–234, 170–181. 
https://doi.org/10.1016/j.apenergy.2018.10.050. 

Soliz, A., 2021. Divergent infrastructure: uncovering alternative pathways in urban 
velomobilities. J. Transport Geogr. 90, 2926–2926.  

Son, C.H., Baek, J.I., Ban, Y.U., 2018. Structural impact relationships between urban 
development intensity characteristics and carbon dioxide emissions in Korea. 
Sustainability 10 (6). https://doi.org/10.3390/su10061838. 

Stagakis, S., Chrysoulakis, N., Spyridakis, N., Feigenwinter, C., Vogt, R., 2019. Eddy 
Covariance measurements and source partitioning of CO2 emissions in an urban 
environment: application for Heraklion. Greece. Atmos. Environ 201, 278–292. 
https://doi.org/10.1016/j.atmosenv.2019.01.009. 

Su, K., Lee, C., 2021. Spatial dependence pattern of energy-related carbon emissions and 
spatial heterogeneity of influencing factors in China: based on ESDA-GTWR Model. 
Nat. Environ. Pollut. Technol. 20 (1), 29–38. https://doi.org/10.46488/NEPT.2021. 
v20i01.003. 

Sun, H., Li, M., Xue, Y., 2019. Examining the factors influencing transport sector CO2 
emissions and their efficiency in central China. Sustainability 11 (17). https://doi. 
org/10.3390/su11174712. 

Wang, J.F., Zhang, T.L., Fu, B.J., 2016. A measure of spatial stratified heterogeneity. 
Ecol. Indic 67, 250–256. https://doi.org/10.1016/j.ecolind.2016.02.052. 

United Nations, 2014. 2014 Revision of the World Urbanization Prospects. Department 
of Economic and Social Affairs. https://population.un.org/wup/default.aspx. 

Vittinghoff, E., Glidden, D.V., Shiboski, S.C., McCulloch, C.E., 2012. Regression methods 
in biostatistics: linear, logistic, survival, and repeated measures models. In: Second 
ed. Springer, New York.  

Wang, S., Fang, C., Wang, Y., Huang, Y., Ma, H., 2015. Quantifying the relationship 
between urban development intensity and carbon dioxide emissions using a panel 
data analysis. Ecol. Indicat. 49, 121–131. https://doi.org/10.1016/j. 
ecolind.2014.10.004. 

Wang, S., Liu, X., Zhou, C., Hu, J., Ou, J., 2017. Examining the impacts of socioeconomic 
factors, urban form, and transportation networks on CO2 emissions in China’s 
megacities. Appl. Energy 185, 189–200. https://doi.org/10.1016/j. 
apenergy.2016.10.052. 

S. Zuo et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.atmosenv.2011.07.040
https://doi.org/10.3390/su12198146
https://doi.org/10.1080/10511482
https://doi.org/10.1016/j.landurbplan.2013.10.002
https://doi.org/10.1016/j.jenvman.2018.02.001
https://doi.org/10.1016/j.rser.2016.10.066
https://doi.org/10.1016/j.landurbplan.2017.02.014
https://doi.org/10.1016/j.landurbplan.2017.02.014
https://doi.org/10.3141/2503-05
https://doi.org/10.1016/j.landurbplan.2013.12.008
http://refhub.elsevier.com/S0959-6526(22)04520-6/sref16
http://refhub.elsevier.com/S0959-6526(22)04520-6/sref16
http://refhub.elsevier.com/S0959-6526(22)04520-6/sref16
https://doi.org/10.1016/j.jclepro.2017.05.091
https://doi.org/10.1016/j.jclepro.2017.05.091
https://doi.org/10.1080/09613218.2018.1479927
https://doi.org/10.1016/j.scib.2019.12.007
https://doi.org/10.1016/j.jag.2021.102648
https://doi.org/10.3390/s18092900
https://doi.org/10.1126/science.aad9302
https://doi.org/10.1126/science.aad9302
https://doi.org/10.1504/ijgw.2022.120066
https://doi.org/10.1016/j.egypro.2016.09.089
https://doi.org/10.1016/j.egypro.2016.09.089
https://doi.org/10.5194/bg-19-1067-2022
http://refhub.elsevier.com/S0959-6526(22)04520-6/sref26
http://refhub.elsevier.com/S0959-6526(22)04520-6/sref26
https://doi.org/10.1016/j.enpol.2014.01.024
https://doi.org/10.1016/j.enpol.2014.01.024
https://doi.org/10.1016/j.jtrangeo.2020.102694
https://doi.org/10.1016/j.jtrangeo.2020.102694
https://doi.org/10.1088/1748-9326/ab9be3
https://doi.org/10.1088/1748-9326/ab9be3
https://doi.org/10.1111/j.1468-0084.2009.00569.x
https://doi.org/10.1111/j.1468-0084.2009.00569.x
https://doi.org/10.1007/s10668-021-01433-w
https://doi.org/10.1016/j.jclepro.2011.06.011
https://doi.org/10.1016/j.jclepro.2011.06.011
https://doi.org/10.1038/nature14677
https://doi.org/10.1038/nature14677
https://doi.org/10.3390/ijerph18115567
https://doi.org/10.1088/1748-9326/aabd42
https://doi.org/10.1088/1748-9326/aabd42
http://refhub.elsevier.com/S0959-6526(22)04520-6/sref36
http://refhub.elsevier.com/S0959-6526(22)04520-6/sref36
https://doi.org/10.1016/j.scitotenv.2021.149728
https://doi.org/10.1061/(asce)up.1943-5444.0000226
https://doi.org/10.1061/(asce)up.1943-5444.0000226
https://doi.org/10.1080/17549175.2019.1626266
https://doi.org/10.1007/s10980-013-9943-4
https://doi.org/10.1016/j.jclepro.2019.04.123
http://refhub.elsevier.com/S0959-6526(22)04520-6/sref42
http://refhub.elsevier.com/S0959-6526(22)04520-6/sref42
http://refhub.elsevier.com/S0959-6526(22)04520-6/sref42
https://doi.org/10.3390/en14165044
https://doi.org/10.1016/j.cities.2019.05.010
https://doi.org/10.1016/j.egypro.2018.09.193
https://doi.org/10.1016/j.egypro.2018.09.193
https://doi.org/10.1016/j.jenvman.2020.110300
https://doi.org/10.1016/j.jenvman.2020.110300
https://doi.org/10.1016/j.apenergy.2018.10.050
http://refhub.elsevier.com/S0959-6526(22)04520-6/sref49
http://refhub.elsevier.com/S0959-6526(22)04520-6/sref49
https://doi.org/10.3390/su10061838
https://doi.org/10.1016/j.atmosenv.2019.01.009
https://doi.org/10.46488/NEPT.2021.v20i01.003
https://doi.org/10.46488/NEPT.2021.v20i01.003
https://doi.org/10.3390/su11174712
https://doi.org/10.3390/su11174712
https://doi.org/10.1016/j.ecolind.2016.02.052
https://population.un.org/wup/default.aspx
http://refhub.elsevier.com/S0959-6526(22)04520-6/sref55
http://refhub.elsevier.com/S0959-6526(22)04520-6/sref55
http://refhub.elsevier.com/S0959-6526(22)04520-6/sref55
https://doi.org/10.1016/j.ecolind.2014.10.004
https://doi.org/10.1016/j.ecolind.2014.10.004
https://doi.org/10.1016/j.apenergy.2016.10.052
https://doi.org/10.1016/j.apenergy.2016.10.052


Journal of Cleaner Production 380 (2022) 134947

12

Wang, S., Zeng, J., Huang, Y., Shi, C., Zhan, P., 2018. The effects of urbanization on CO2 
emissions in the Pearl River Delta: a comprehensive assessment and panel data 
analysis. Appl. Energy 228, 1693–1706. https://doi.org/10.1016/j. 
apenergy.2018.06.155. 

Wu, Y., Sharifi, A., Yang, P., Borjigin, H., Murakami, D., Yamagata, Y., 2018. Mapping 
building carbon emissions within local climate zones in Shanghai. Energy Proc. 152, 
815–822. https://doi.org/10.1016/j.egypro.2018.09.195. 

Xia, L., Zhang, Y., Sun, X., Li, J., 2017. Analyzing the spatial pattern of carbon 
metabolism and its response to change of urban form. Ecol. Model. 355, 105–115. 
https://doi.org/10.1016/j.ecolmodel.2017.03.002. 

Xu, X., Ou, J., Liu, P., Liu, X., Zhang, H., 2021. Investigating the impacts of three- 
dimensional spatial structures on CO2 emissions at the urban scale. Sci. Total 
Environ. 762 (143096) https://doi.org/10.1016/j.scitotenv.2020.143096. 

Yang, W., Chen, B.Y., Cao, X., Li, T., Li, P., 2017. The spatial characteristics and 
influencing factors of modal accessibility gaps: a case study for Guangzhou, China. 
J. Transport Geogr. 60, 21–32. https://doi.org/10.1016/j.jtrangeo.2017.02.005. 

Ye, H., He, X., Song, Y., Li, X., Zhang, G., Lin, T., Xiao, L., 2015. A sustainable urban 
form: the challenges of compactness from the viewpoint of energy consumption and 
carbon emission. Energy Build. 93, 90–98. https://doi.org/10.1016/j. 
enbuild.2015.02.011. 

Zhang, H., Peng, J., Wang, R., Zhang, J., Yu, D., 2021. Spatial planning factors that 
influence CO2 emissions: a systematic literature review. Urban Clim. 36 (100809) 
https://doi.org/10.1016/j.uclim.2021.100809. 

Zhang, J., Xie, Y., Luan, B., Chen, X., 2015. Urban macro-level impact factors on direct 
CO2 emissions of urban residents in China. Energy Build. 107, 131–143. https://doi. 
org/10.1016/j.enbuild.2015.08.011. 

Zheng, B., Huo, H., Zhang, Q., Yao, Z.L., Wang, X.T., Yang, X.F., Liu, H., He, K.B., 2014. 
High-resolution mapping of vehicle emissions in China in 2008. Atmos. Chem. Phys. 
14, 9787–9805. https://doi.org/10.5194/acp-14-9787-2014, 2014.  

Zuo, S., Dai, S., Ren, Y., 2020. More fragmentized urban form more CO2 emissions? A 
comprehensive relationship from the combination analysis across different scales. 
J. Clean. Prod. 244, 118659. https://doi.org/10.1016/j.jclepro.2019.118659. 

S. Zuo et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.apenergy.2018.06.155
https://doi.org/10.1016/j.apenergy.2018.06.155
https://doi.org/10.1016/j.egypro.2018.09.195
https://doi.org/10.1016/j.ecolmodel.2017.03.002
https://doi.org/10.1016/j.scitotenv.2020.143096
https://doi.org/10.1016/j.jtrangeo.2017.02.005
https://doi.org/10.1016/j.enbuild.2015.02.011
https://doi.org/10.1016/j.enbuild.2015.02.011
https://doi.org/10.1016/j.uclim.2021.100809
https://doi.org/10.1016/j.enbuild.2015.08.011
https://doi.org/10.1016/j.enbuild.2015.08.011
https://doi.org/10.5194/acp-14-9787-2014
https://doi.org/10.1016/j.jclepro.2019.118659

	The importance of the functional mixed entropy for the explanation of residential and transport CO2 emissions in the urban  ...
	1 Introduction
	2 Data and methodologies
	2.1 Study region
	2.2 Data sources
	2.3 Urban form description and classification
	2.4 RTCE map downscaling interpolation and anlysis
	2.5 Geographically Weighted Regression (GWR) method

	3 Results
	3.1 Residential CO2 emissions pattern in the urban center regions
	3.2 Descriptive analysis of urban forms indicators
	3.3 Impacts of urban forms on RTCE

	4 Discussion
	4.1 1The factors affect the residential CO2 emissions
	4.2 Impacts of the FME on RTCE
	4.3 Significance, limitation and recommendation

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References


